Back to Search Start Over

Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment

Authors :
Universitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
Universitat Politècnica de Catalunya. ANCORA - Anàlisi i control del ritme cardíac
Mimetis Biomaterials
Institut de Recerca Sant Joan de Déu
Universitat Autònoma de Barcelona
Universitat de Barcelona. Departament de Genètica, Microbiologia i Estadística
Institut de Bioenginyeria de Catalunya
Raymond Llorens, Santiago
Bonany Mariñosa, Mar
Lehmann, Cyril
Thorel, Emilie
Benítez Iglesias, Raúl
Franch Serracanta, Jordi
Canal Barnils, Cristina
Ginebra Molins, Maria Pau
Universitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
Universitat Politècnica de Catalunya. ANCORA - Anàlisi i control del ritme cardíac
Mimetis Biomaterials
Institut de Recerca Sant Joan de Déu
Universitat Autònoma de Barcelona
Universitat de Barcelona. Departament de Genètica, Microbiologia i Estadística
Institut de Bioenginyeria de Catalunya
Raymond Llorens, Santiago
Bonany Mariñosa, Mar
Lehmann, Cyril
Thorel, Emilie
Benítez Iglesias, Raúl
Franch Serracanta, Jordi
Canal Barnils, Cristina
Ginebra Molins, Maria Pau
Publication Year :
2021

Abstract

Hydrothermal (H) processes accelerate the hydrolysis reaction of a-tricalcium phosphate (a-TCP) compared to the long-established biomimetic (B) treatments. They are of special interest for patient-specific 3D-printed bone graft substitutes, where the manufacturing time represents a critical constraint. Altering the reaction conditions has implications for the physicochemical properties of the reaction product. However, the impact of the changes produced by the hydrothermal reaction on the in vivo performance was hitherto unknown. The present study compares the bone regeneration potential of 3D-printed a-TCP scaffolds hardened using these two treatments in rabbit condyle monocortical defects. Although both consolidation processes resulted in biocompatible scaffolds with osseointegrative and osteoconductive properties, the amount of newly formed bone increased by one third in the hydrothermal vs the biomimetic samples. B and H scaffolds consisted mostly of high specific surface area calcium-deficient hydroxyapatite (38 and 27 m2 g-1, respectively), with H samples containing also 10 wt.% ß-tricalcium phosphate (ß-TCP). The shrinkage produced during the consolidation process was shown to be very small in both cases, below 3%, and smaller for H than for B samples. The differences in the in vivo performance were mainly attributed to the distinct crystallisation nanostructures, which proved to have a major impact on permeability and protein adsorption capacity, using BSA as a model protein, with B samples being highly impermeable. Given the crucial role that soluble proteins play in osteogenesis, this is proposed to be a relevant factor behind the distinct in vivo performances observed for the two materials. Statement of significance The possibility to accelerate the consolidation of self-setting calcium phosphate inks through hydrothermal treatments has aroused great interest due to the associated advantages for the development of 3D-printed personalised bone scaffolds. U<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
18 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1298727894
Document Type :
Electronic Resource