Back to Search Start Over

Forecasting Building Electric Consumption Patterns through Statistical Methods

Authors :
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Serrano-Guerrero, Xavier
Siavichay, Luis-Fernando
Clairand, Jean-Michel
Escrivá-Escrivá, Guillermo
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Serrano-Guerrero, Xavier
Siavichay, Luis-Fernando
Clairand, Jean-Michel
Escrivá-Escrivá, Guillermo
Publication Year :
2020

Abstract

[EN] The electricity sector presents new challenges in the operation and planning of power systems, such as the forecast of power demand. This paper proposes a comprehensive approach for evaluating statistical methods and techniques of electric demand forecast. The proposed approach is based on smoothing methods, simple and multiple regressions, and ARIMA models, applied to two real university buildings from Ecuador and Spain. The results are analyzed by statistical metrics to assess their predictive capacity, and they indicate that the Holt-Winter and ARIMA methods have the best performance to forecast the electricity demand (ED).

Details

Database :
OAIster
Notes :
TEXT, TEXT, TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1308862318
Document Type :
Electronic Resource