Back to Search Start Over

Evidence for the Formation of a Mo-H Intermediate in the Catalytic Cycle of Formate Dehydrogenase

Authors :
Tiberti, M
Papaleo, E
Russo, N
DE GIOIA, L
Zampella, G
DE GIOIA, LUCA
ZAMPELLA, GIUSEPPE
Tiberti, M
Papaleo, E
Russo, N
DE GIOIA, L
Zampella, G
DE GIOIA, LUCA
ZAMPELLA, GIUSEPPE
Publication Year :
2012

Abstract

DFT/BP86/TZVP and DFT/B3LYP/TZVP have been used to investigate systematically the reaction pathways associated with the H-transfer step, which is the rate-determining step of the reaction HCOO- reversible arrow CO2 + H+ + 2e(-), as catalyzed by metalloenzyme formate dehydrogenase (FDH). Actually, the energetics associated with the transfer from formate to all H (proton or hydride) acceptors that are present within the FDH active site have been sampled. This study points to a viable intimate mechanism in which the metal center mediates H transfer from formate to the final acceptor, i.e. a selenocysteine residue. The Mo-based reaction pathway, consisting of a beta-H elimination to metal with concerted decarboxylation, turned out to be favored over previously proposed routes in which proton transfer occurs directly from HCOO- to selenocysteine. The proposed reaction pathway is reminiscent of the key step of metal-based catalysis of the water-gas shift reaction.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1308903609
Document Type :
Electronic Resource