Back to Search Start Over

Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing

Authors :
Haussener, Sophia
Coray, P.S.
Lipiński, Wojciech
Wyss, Peter
Steinfeld, Aldo
Haussener, Sophia
Coray, P.S.
Lipiński, Wojciech
Wyss, Peter
Steinfeld, Aldo
Source :
Journal of Heat Transfer
Publication Year :
2010

Abstract

Reticulate porous ceramics employed in high-temperature processes are characterized for heat and mass transfer. The exact 3D digital geometry of their complex porous structure is obtained by computer tomography and used in direct pore-level simulations to numerically calculate their effective transport properties. Two-point correlation functions and mathematical morphology operations are applied for the geometrical characterization that includes the determination of porosity, specific surface area, representative elementary volume edge size, and mean pore size. Finite volume techniques are applied for conductive/convective heat transfer and flow characterization, which includes the determination of the thermal conductivity, interfacial heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, residence time, tortuosity, and diffusion tensor. Collision-based Monte Carlo method is applied for the radiative heat transfer characterization, which includes the determination of the extinction coefficient and scattering phase function.

Details

Database :
OAIster
Journal :
Journal of Heat Transfer
Notes :
en_AU
Publication Type :
Electronic Resource
Accession number :
edsoai.on1310099546
Document Type :
Electronic Resource