Back to Search
Start Over
Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing
- Source :
- Journal of Heat Transfer
- Publication Year :
- 2010
-
Abstract
- Reticulate porous ceramics employed in high-temperature processes are characterized for heat and mass transfer. The exact 3D digital geometry of their complex porous structure is obtained by computer tomography and used in direct pore-level simulations to numerically calculate their effective transport properties. Two-point correlation functions and mathematical morphology operations are applied for the geometrical characterization that includes the determination of porosity, specific surface area, representative elementary volume edge size, and mean pore size. Finite volume techniques are applied for conductive/convective heat transfer and flow characterization, which includes the determination of the thermal conductivity, interfacial heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, residence time, tortuosity, and diffusion tensor. Collision-based Monte Carlo method is applied for the radiative heat transfer characterization, which includes the determination of the extinction coefficient and scattering phase function.
Details
- Database :
- OAIster
- Journal :
- Journal of Heat Transfer
- Notes :
- en_AU
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1310099546
- Document Type :
- Electronic Resource