Back to Search Start Over

Sediment transfer in an alpine catchment, assessed by 10Be

Authors :
Savi, S
Norton, K
Ackar, N
Schlunegger, F
Picotti, V
Brardinoni, F
BRARDINONI, FRANCESCO
Savi, S
Norton, K
Ackar, N
Schlunegger, F
Picotti, V
Brardinoni, F
BRARDINONI, FRANCESCO
Publication Year :
2011

Abstract

Landscape evolution in mountainous catchments is the result of multiple factors acting at different scales in time and space. The main components affecting basin morphologies are: uplift, glacial cycles, erosion (long timescale), mass movements and cycles of freeze-thaw (short timescale). In this study, we quantify the rates of sediment production and transfer from an alpine catchment in which debris flows are a dominant geomorphic agent. We use cosmogenic nuclides to determine the connectivity between source areas and sinks and to estimate the timescale of sediment production and the fluxes of sediment through the basin. The Zielbach basin consists of a ca. 30 km2-large central basin where cascade and step-pool channels have eroded into the highly fractured and foliated metamorphic bedrock, and a ca. 10 km2-large eastern tributary basin where a network of debris flow channels are perched on a deep-seated sackung. Whereas the central basin shows a poor connectivity between hillslopes and the channel network, the debris flow channels of the eastern tributary basin are closely connected with the bordering hillslopes. In the central basin, the geometry of the channel network is strongly affected by the litho-tectonic fabric as channels parallel the major faults and foliations. In the headwaters, rock glaciers and rock fall deposits tens of meters thick form transverse topographic ridges which retain the sediment in a semi-closed sedimentary traps. Moreover field work and GIS analysis reveal a strong relationship between structural setting and sediments production in which sediment production is high in weakened shear and fault zones. The eastern tributary basin has highly fractured bedrock, partially related to ice retreat after the LGM age. The whole catchment is characterize by a high production of sediments related both to tectonic structure present in the area and to the steep slopes left by the glacial retreat. The geomorphology shows a clear difference between th

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1311386895
Document Type :
Electronic Resource