Back to Search Start Over

Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks - 115110H

Authors :
Universitat Politècnica de Catalunya. Departament d'Òptica i Optometria
Universitat Politècnica de Catalunya. GOAPI - Grup d'Òptica Aplicada i Processament d'Imatge
Sierra Bravo, Juan Sebastián
Pineda, Jesús
Viteri Coronel, Eduardo
Rueda Latorre, Daniela
Tibaduiza Vargas, Beatriz Eugenia
Berrospi, Rubén
Tello, Alejandro
Galvis Ramírez, Virgilio
Volpe, Giovanni
Millán Garcia-Varela, M. Sagrario
Romero Pérez, Lenny Alexandra
Marrugo Hernandez, Andrés Guillermo
Universitat Politècnica de Catalunya. Departament d'Òptica i Optometria
Universitat Politècnica de Catalunya. GOAPI - Grup d'Òptica Aplicada i Processament d'Imatge
Sierra Bravo, Juan Sebastián
Pineda, Jesús
Viteri Coronel, Eduardo
Rueda Latorre, Daniela
Tibaduiza Vargas, Beatriz Eugenia
Berrospi, Rubén
Tello, Alejandro
Galvis Ramírez, Virgilio
Volpe, Giovanni
Millán Garcia-Varela, M. Sagrario
Romero Pérez, Lenny Alexandra
Marrugo Hernandez, Andrés Guillermo
Publication Year :
2020

Abstract

Automated cell counting in in-vivo specular microscopy images is challenging, especially in situations where single-cell segmentation methods fail due to pathological conditions. This work aims to obtain reliable cell segmentation from specular microscopy images of both healthy and pathological corneas. We cast the problem of cell segmentation as a supervised multi-class segmentation problem. The goal is to learn a mapping relation between an input specular microscopy image and its labeled counterpart, indicating healthy (cells) and pathological regions (e.g., guttae). We trained a U-net model by extracting 96 96 pixel patches from corneal endothelial cell images and the corresponding manual segmentation by a physician. Encouraging results show that the proposed method can deliver reliable feature segmentation enabling more accurate cell density estimations for assessing the state of the cornea.<br />This work has been partly funded by the Centre de Cooperació i Desenvolupament (CCD) at the Universitat Politècnica de Catalunya under project ref. CCD 2020-B014.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
6 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1311973667
Document Type :
Electronic Resource