Back to Search
Start Over
Lens parameters for Gaia18cbf -- a long gravitational microlensing event in the Galactic plane
- Publication Year :
- 2021
-
Abstract
- Context: The timescale of a microlensing event scales as a square root of a lens mass. Therefore, long-lasting events are important candidates for massive lenses, including black holes. Aims: Here we present the analysis of the Gaia18cbf microlensing event reported by the Gaia Science Alerts system. It exhibited a long timescale and features that are common for the annual microlensing parallax effect. We deduce the parameters of the lens based on the derived best fitting model. Methods: We used photometric data collected by the Gaia satellite as well as the follow-up data gathered by the ground-based observatories. We investigated the range of microlensing models and used them to derive the most probable mass and distance to the lens using a Galactic model as a prior. Using known mass-brightness relation we determined how likely it is that the lens is a main-sequence (MS) star. Results: This event is one of the longest ever detected, with the Einstein timescale of $t_\mathrm{E}=491.41^{+128.31}_{-84.94}$ days for the best solution and $t_\mathrm{E}=453.74^{+178.69}_{-105.74}$ days for the second-best. Assuming Galaxy priors, this translates to the most probable lens mass of $M_\mathrm{L} = 2.65^{+5.09}_{-1.48} M_\odot$ and $M_\mathrm{L} = 1.71^{+3.78}_{-1.06} M_\odot$, respectively. The limits on the blended light suggest that this event was most likely not caused by a MS star, but rather by a dark remnant of stellar evolution.<br />Comment: accepted by Astonomy&Astrophysics, 12 pages, 5 figures
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1312090913
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1051.0004-6361.202142602