Back to Search Start Over

Artificial Intelligence for Detecting Indoor Visual Discomfort from Facial Analysis of Building Occupants

Authors :
Johra, Hicham
Gade, Rikke
Poulsen, Mathias Østergaard
Christensen, Albert Daugbjerg
Khanie, Mandana Sarey
Moeslund, Thomas
Jensen, Rasmus Lund
Johra, Hicham
Gade, Rikke
Poulsen, Mathias Østergaard
Christensen, Albert Daugbjerg
Khanie, Mandana Sarey
Moeslund, Thomas
Jensen, Rasmus Lund
Source :
Johra , H , Gade , R , Poulsen , M Ø , Christensen , A D , Khanie , M S , Moeslund , T & Jensen , R L 2021 , ' Artificial Intelligence for Detecting Indoor Visual Discomfort from Facial Analysis of Building Occupants ' , Journal of Physics: Conference Series , vol. 2042 , no. 1 , 012008 .
Publication Year :
2021

Abstract

Glare is a common local visual discomfort that is difficult to identify with conventional light sensors. This article presents an artificial intelligence algorithm that detects subjective local glare discomfort from the image analysis of the video footage of an office occupant’s face. The occupant’s face is directly used as a visual comfort sensor. Results show that it can recognize glare discomfort with around 90% accuracy. This algorithm can thus be at the basis of an efficient feedback control system to regulate shading devices in an office building.

Details

Database :
OAIster
Journal :
Johra , H , Gade , R , Poulsen , M Ø , Christensen , A D , Khanie , M S , Moeslund , T & Jensen , R L 2021 , ' Artificial Intelligence for Detecting Indoor Visual Discomfort from Facial Analysis of Building Occupants ' , Journal of Physics: Conference Series , vol. 2042 , no. 1 , 012008 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1312791127
Document Type :
Electronic Resource