Back to Search Start Over

An objective comparison of cell-tracking algorithms

Authors :
Ulman, Vladimír
Maška, Martin
Magnusson, Klas E G
Ronneberger, Olaf
Haubold, Carsten
Harder, Nathalie
Matula, Pavel
Matula, Petr
Svoboda, David
Radojevic, Miroslav
Smal, Ihor
Rohr, Karl
Jaldén, Joakim
Blau, Helen M
Dzyubachyk, Oleh
Lelieveldt, Boudewijn
Xiao, Pengdong
Li, Yuexiang
Cho, Siu-Yeung
Dufour, Alexandre C
Olivo-Marin, Jean-Christophe
Reyes-Aldasoro, Constantino C
Solis-Lemus, Jose A
Bensch, Robert
Brox, Thomas
Stegmaier, Johannes
Mikut, Ralf
Wolf, Steffen
Hamprecht, Fred A
Esteves, Tiago
Quelhas, Pedro
Demirel, Ömer
Malmström, Lars
Jug, Florian
Tomancak, Pavel
Meijering, Erik
Muñoz-Barrutia, Arrate
Kozubek, Michal
Ortiz-de-Solorzano, Carlos
Ulman, Vladimír
Maška, Martin
Magnusson, Klas E G
Ronneberger, Olaf
Haubold, Carsten
Harder, Nathalie
Matula, Pavel
Matula, Petr
Svoboda, David
Radojevic, Miroslav
Smal, Ihor
Rohr, Karl
Jaldén, Joakim
Blau, Helen M
Dzyubachyk, Oleh
Lelieveldt, Boudewijn
Xiao, Pengdong
Li, Yuexiang
Cho, Siu-Yeung
Dufour, Alexandre C
Olivo-Marin, Jean-Christophe
Reyes-Aldasoro, Constantino C
Solis-Lemus, Jose A
Bensch, Robert
Brox, Thomas
Stegmaier, Johannes
Mikut, Ralf
Wolf, Steffen
Hamprecht, Fred A
Esteves, Tiago
Quelhas, Pedro
Demirel, Ömer
Malmström, Lars
Jug, Florian
Tomancak, Pavel
Meijering, Erik
Muñoz-Barrutia, Arrate
Kozubek, Michal
Ortiz-de-Solorzano, Carlos

Abstract

We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.

Details

Database :
OAIster
Notes :
application/pdf, Ulman, Vladimír, Maška, Martin, Magnusson, Klas E G, Ronneberger, Olaf, Haubold, Carsten, Harder, Nathalie, Matula, Pavel, Matula, Petr, Svoboda, David, Radojevic, Miroslav, Smal, Ihor, Rohr, Karl, Jaldén, Joakim, Blau, Helen M, Dzyubachyk, Oleh, Lelieveldt, Boudewijn, Xiao, Pengdong, Li, Yuexiang, Cho, Siu-Yeung, Dufour, Alexandre C, Olivo-Marin, Jean-Christophe, Reyes-Aldasoro, Constantino C, Solis-Lemus, Jose A, Bensch, Robert, Brox, Thomas, Stegmaier, Johannes, Mikut, Ralf, Wolf, Steffen, Hamprecht, Fred A, Esteves, Tiago, Quelhas, Pedro, Demirel, Ömer, Malmström, Lars, Jug, Florian, Tomancak, Pavel, Meijering, Erik, Muñoz-Barrutia, Arrate, Kozubek, Michal and Ortiz-de-Solorzano, Carlos (2017) An objective comparison of cell-tracking algorithms. Nature Methods, 14 (12). pp. 1141-1152. ISSN 1548-7091, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1312898870
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1038.nmeth.4473