Back to Search Start Over

Quantitative single-cell proteomics as a tool to characterize cellular hierarchies

Authors :
Schoof, Erwin M
Furtwängler, Benjamin
Üresin, Nil
Rapin, Nicolas
Savickas, Simonas
Gentil, Coline
Lechman, Eric
Keller, Ulrich Auf dem
Dick, John E
Porse, Bo T
Schoof, Erwin M
Furtwängler, Benjamin
Üresin, Nil
Rapin, Nicolas
Savickas, Simonas
Gentil, Coline
Lechman, Eric
Keller, Ulrich Auf dem
Dick, John E
Porse, Bo T
Source :
Schoof , E M , Furtwängler , B , Üresin , N , Rapin , N , Savickas , S , Gentil , C , Lechman , E , Keller , U A D , Dick , J E & Porse , B T 2021 , ' Quantitative single-cell proteomics as a tool to characterize cellular hierarchies ' , Nature Communications , vol. 12 , no. 1 , pp. 3341 .
Publication Year :
2021

Abstract

Large-scale single-cell analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems, but have largely been limited to RNA-based technologies. Here we present a comprehensive benchmarked experimental and computational workflow, which establishes global single-cell mass spectrometry-based proteomics as a tool for large-scale single-cell analyses. By exploiting a primary leukemia model system, we demonstrate both through pre-enrichment of cell populations and through a non-enriched unbiased approach that our workflow enables the exploration of cellular heterogeneity within this aberrant developmental hierarchy. Our approach is capable of consistently quantifying ~1000 proteins per cell across thousands of individual cells using limited instrument time. Furthermore, we develop a computational workflow (SCeptre) that effectively normalizes the data, integrates available FACS data and facilitates downstream analysis. The approach presented here lays a foundation for implementing global single-cell proteomics studies across the world.

Details

Database :
OAIster
Journal :
Schoof , E M , Furtwängler , B , Üresin , N , Rapin , N , Savickas , S , Gentil , C , Lechman , E , Keller , U A D , Dick , J E & Porse , B T 2021 , ' Quantitative single-cell proteomics as a tool to characterize cellular hierarchies ' , Nature Communications , vol. 12 , no. 1 , pp. 3341 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1322763733
Document Type :
Electronic Resource