Back to Search Start Over

Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation.

Authors :
UCL - (SLuc) Service de neurologie
UCL - SSS/IREC/EDIN - Pôle d'endocrinologie, diabète et nutrition
UCL - (SLuc) Centre de référence neuromusculaire
Beijer, Danique
Kim, Hong Joo
Guo, Lin
O'Donovan, Kevin
Mademan, Inès
Deconinck, Tine
Van Schil, Kristof
Fare, Charlotte M
Drake, Lauren E
Ford, Alice F
Kochański, Andrzej
Kabzińska, Dagmara
Dubuisson, Nicolas
Van den Bergh, Peter
Voermans, Nicol C
Lemmers, Richard Jlf
van der Maarel, Silvère M
Bonner, Devon
Sampson, Jacinda B
Wheeler, Matthew T
Mehrabyan, Anahit
Palmer, Steven
De Jonghe, Peter
Shorter, James
Taylor, J Paul
Baets, Jonathan
UCL - (SLuc) Service de neurologie
UCL - SSS/IREC/EDIN - Pôle d'endocrinologie, diabète et nutrition
UCL - (SLuc) Centre de référence neuromusculaire
Beijer, Danique
Kim, Hong Joo
Guo, Lin
O'Donovan, Kevin
Mademan, Inès
Deconinck, Tine
Van Schil, Kristof
Fare, Charlotte M
Drake, Lauren E
Ford, Alice F
Kochański, Andrzej
Kabzińska, Dagmara
Dubuisson, Nicolas
Van den Bergh, Peter
Voermans, Nicol C
Lemmers, Richard Jlf
van der Maarel, Silvère M
Bonner, Devon
Sampson, Jacinda B
Wheeler, Matthew T
Mehrabyan, Anahit
Palmer, Steven
De Jonghe, Peter
Shorter, James
Taylor, J Paul
Baets, Jonathan
Source :
JCI insight, Vol. 6, no. 14, p. e148363 [1-19] (2021)
Publication Year :
2021

Abstract

Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.

Details

Database :
OAIster
Journal :
JCI insight, Vol. 6, no. 14, p. e148363 [1-19] (2021)
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1328222834
Document Type :
Electronic Resource