Back to Search
Start Over
Acceleration of PageRank with customized precision based on mantissa segmentation
- Publication Year :
- 2020
-
Abstract
- [EN] We describe the application of a communication-reduction technique for the PageRank algorithm that dynamically adapts the precision of the data access to the numerical requirements of the algorithm as the iteration converges. Our variable-precision strategy, using a customized precision format based on mantissa segmentation (CPMS), abandons the IEEE 754 single- and double-precision number representation formats employed in the standard implementation of PageRank, and instead handles the data in memory using a customized floating-point format. The customized format enables fast data access in different accuracy, prevents overflow/underflow by preserving the IEEE 754 double-precision exponent, and efficiently avoids data duplication, since all bits of the original IEEE 754 double-precision mantissa are preserved in memory, but re-organized for efficient reduced precision access. With this approach, the truncated values (omitting significand bits), as well as the original IEEE double-precision values, can be retrieved without duplicating the data in different formats. Our numerical experiments on an NVIDIA V100 GPU (Volta architecture) and a server equipped with two Intel Xeon Platinum 8168 CPUs (48 cores in total) expose that, compared with a standard ieee double-precision implementation, the CPMS-based PageRank completes about 10% faster if high-accuracy output is needed, and about 30% faster if reduced output accuracy is acceptable.
Details
- Database :
- OAIster
- Notes :
- TEXT, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1334345642
- Document Type :
- Electronic Resource