Sorry, I don't understand your search. ×
Back to Search Start Over

Identifying multicellular spatiotemporal organization of cells with SpaceFlow.

Authors :
Ren, Honglei
Ren, Honglei
Source :
Nature communications; vol 13, iss 1, 4076; 2041-1723
Publication Year :
2022

Abstract

One major challenge in analyzing spatial transcriptomic datasets is to simultaneously incorporate the cell transcriptome similarity and their spatial locations. Here, we introduce SpaceFlow, which generates spatially-consistent low-dimensional embeddings by incorporating both expression similarity and spatial information using spatially regularized deep graph networks. Based on the embedding, we introduce a pseudo-Spatiotemporal Map that integrates the pseudotime concept with spatial locations of the cells to unravel spatiotemporal patterns of cells. By comparing with multiple existing methods on several spatial transcriptomic datasets at both spot and single-cell resolutions, SpaceFlow is shown to produce a robust domain segmentation and identify biologically meaningful spatiotemporal patterns. Applications of SpaceFlow reveal evolving lineage in heart developmental data and tumor-immune interactions in human breast cancer data. Our study provides a flexible deep learning framework to incorporate spatiotemporal information in analyzing spatial transcriptomic data.

Details

Database :
OAIster
Journal :
Nature communications; vol 13, iss 1, 4076; 2041-1723
Notes :
Ren, Honglei, Walker, Benjamin L, Cang, Zixuan, Nie, Qing
Publication Type :
Electronic Resource
Accession number :
edsoai.on1341876344
Document Type :
Electronic Resource