Back to Search Start Over

On the Short-Term Variability of Turbulence and Temperature in the Winter Mesosphere

Authors :
1394807
Lehmacher, Gerald A.
Larsen, Miguel F.
Collins, Richard L.
Barjatya, Aroh
Strelnikov, Boris
1394807
Lehmacher, Gerald A.
Larsen, Miguel F.
Collins, Richard L.
Barjatya, Aroh
Strelnikov, Boris
Source :
Publications
Publication Year :
2018

Abstract

Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (%) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0Kp∼5).

Details

Database :
OAIster
Journal :
Publications
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1343945457
Document Type :
Electronic Resource