Back to Search Start Over

An Approach to Reduce the Cost of Evaluation in Evolutionary Learning

Authors :
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC134: Sistemas Informáticos
Comisión Interministerial de Ciencia y Tecnología (CICYT). España
Giráldez, Raúl
Díaz Díaz, Norberto
Nepomuceno Chamorro, Isabel de los Ángeles
Aguilar Ruiz, Jesús Salvador
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC134: Sistemas Informáticos
Comisión Interministerial de Ciencia y Tecnología (CICYT). España
Giráldez, Raúl
Díaz Díaz, Norberto
Nepomuceno Chamorro, Isabel de los Ángeles
Aguilar Ruiz, Jesús Salvador
Publication Year :
2005

Abstract

The supervised learning methods applying evolutionary al gorithms to generate knowledge model are extremely costly in time and space. Fundamentally, this high computational cost is fundamentally due to the evaluation process that needs to go through the whole datasets to assess their goodness of the genetic individuals. Often, this process carries out some redundant operations which can be avoided. In this paper, we present an example reduction method to reduce the computational cost of the evolutionary learning algorithms by means of extraction, storage and processing only the useful information in the evaluation process.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1346527364
Document Type :
Electronic Resource