Back to Search Start Over

Edge Partitions of Complete Geometric Graphs

Authors :
Goaoc, Xavier
Kerber, Michael
Aichholzer, Oswin
Obenaus, Johannes
Orthaber, Joachim
Paul, Rosna
Schnider, Patrick
Steiner, Raphael
Taubner, Tim
Vogtenhuber, Birgit
Goaoc, Xavier
Kerber, Michael
Aichholzer, Oswin
Obenaus, Johannes
Orthaber, Joachim
Paul, Rosna
Schnider, Patrick
Steiner, Raphael
Taubner, Tim
Vogtenhuber, Birgit
Source :
Aichholzer , O , Obenaus , J , Orthaber , J , Paul , R , Schnider , P , Steiner , R , Taubner , T & Vogtenhuber , B 2022 , Edge Partitions of Complete Geometric Graphs . in X Goaoc & M Kerber (eds) , 38th International Symposium on Computational Geometry, SoCG 2022 . , 6 , Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , Leibniz International Proceedings in Informatics, LIPIcs , vol. 224 , pp. 1-16 , 38th International Symposium on Computational Geometry, SoCG 2022 , Berlin , Germany , 07/06/2022 .
Publication Year :
2022

Abstract

In this paper, we disprove the long-standing conjecture that any complete geometric graph on 2n vertices can be partitioned into n plane spanning trees. Our construction is based on so-called bumpy wheel sets. We fully characterize which bumpy wheels can and in particular which cannot be partitioned into plane spanning trees (or even into arbitrary plane subgraphs). Furthermore, we show a sufficient condition for generalized wheels to not admit a partition into plane spanning trees, and give a complete characterization when they admit a partition into plane spanning double stars. Finally, we initiate the study of partitions into beyond planar subgraphs, namely into k-planar and k-quasi-planar subgraphs and obtain first bounds on the number of subgraphs required in this setting.

Details

Database :
OAIster
Journal :
Aichholzer , O , Obenaus , J , Orthaber , J , Paul , R , Schnider , P , Steiner , R , Taubner , T & Vogtenhuber , B 2022 , Edge Partitions of Complete Geometric Graphs . in X Goaoc & M Kerber (eds) , 38th International Symposium on Computational Geometry, SoCG 2022 . , 6 , Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , Leibniz International Proceedings in Informatics, LIPIcs , vol. 224 , pp. 1-16 , 38th International Symposium on Computational Geometry, SoCG 2022 , Berlin , Germany , 07/06/2022 .
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1349072045
Document Type :
Electronic Resource