Back to Search
Start Over
Edge Partitions of Complete Geometric Graphs
- Source :
- Aichholzer , O , Obenaus , J , Orthaber , J , Paul , R , Schnider , P , Steiner , R , Taubner , T & Vogtenhuber , B 2022 , Edge Partitions of Complete Geometric Graphs . in X Goaoc & M Kerber (eds) , 38th International Symposium on Computational Geometry, SoCG 2022 . , 6 , Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , Leibniz International Proceedings in Informatics, LIPIcs , vol. 224 , pp. 1-16 , 38th International Symposium on Computational Geometry, SoCG 2022 , Berlin , Germany , 07/06/2022 .
- Publication Year :
- 2022
-
Abstract
- In this paper, we disprove the long-standing conjecture that any complete geometric graph on 2n vertices can be partitioned into n plane spanning trees. Our construction is based on so-called bumpy wheel sets. We fully characterize which bumpy wheels can and in particular which cannot be partitioned into plane spanning trees (or even into arbitrary plane subgraphs). Furthermore, we show a sufficient condition for generalized wheels to not admit a partition into plane spanning trees, and give a complete characterization when they admit a partition into plane spanning double stars. Finally, we initiate the study of partitions into beyond planar subgraphs, namely into k-planar and k-quasi-planar subgraphs and obtain first bounds on the number of subgraphs required in this setting.
Details
- Database :
- OAIster
- Journal :
- Aichholzer , O , Obenaus , J , Orthaber , J , Paul , R , Schnider , P , Steiner , R , Taubner , T & Vogtenhuber , B 2022 , Edge Partitions of Complete Geometric Graphs . in X Goaoc & M Kerber (eds) , 38th International Symposium on Computational Geometry, SoCG 2022 . , 6 , Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , Leibniz International Proceedings in Informatics, LIPIcs , vol. 224 , pp. 1-16 , 38th International Symposium on Computational Geometry, SoCG 2022 , Berlin , Germany , 07/06/2022 .
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1349072045
- Document Type :
- Electronic Resource