Back to Search
Start Over
Quasianalyticity in certain Banach function algebras
-
Abstract
- Let X be a perfect, compact subset of the complex plane. We consider algebras of those functions on X which satisfy a generalized notion of differentiability, which we call F-differentiability. In particular, we investigate a notion of quasianalyticity under this new notion of differentiability and provide some sufficient conditions for certain algebras to be quasianalytic. We give an application of our results in which we construct an essential, natural uniform algebra A on a locally connected, compact Hausdorff space X such that A admits no non-trivial Jensen measures yet is not regular. This construction improves an example of the first author (2001).
Details
- Database :
- OAIster
- Notes :
- doi:10.4064/sm8614-12-2016
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1358467767
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.4064.sm8614-12-2016