Back to Search Start Over

The evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates of LIGO/Virgo binary black holes

Authors :
Belczynski, K.
Klencki, J.
Fields, C. E.
Olejak, A.
Berti, E.
Meynet, G.
Fryer, C. L.
Holz, D. E.
O'Shaughnessy, R.
Brown, D. A.
Bulik, T.
Leung, S. C.
Nomoto, K.
Madau, P.
Hirschi, R.
Kaiser, E.
Jones, S.
Mondal, S.
Chruslinska, M.
Drozda, P.
Gerosa, D.
Doctor, Z.
Giersz, M.
Ekstrom, S.
Georgy, C.
Askar, A.
Baibhav, V.
Wysocki, D.
Natan, T.
Farr, W. M.
Wiktorowicz, G.
Miller, M. Coleman
Farr, B.
Lasota, J. -P.
Belczynski, K.
Klencki, J.
Fields, C. E.
Olejak, A.
Berti, E.
Meynet, G.
Fryer, C. L.
Holz, D. E.
O'Shaughnessy, R.
Brown, D. A.
Bulik, T.
Leung, S. C.
Nomoto, K.
Madau, P.
Hirschi, R.
Kaiser, E.
Jones, S.
Mondal, S.
Chruslinska, M.
Drozda, P.
Gerosa, D.
Doctor, Z.
Giersz, M.
Ekstrom, S.
Georgy, C.
Askar, A.
Baibhav, V.
Wysocki, D.
Natan, T.
Farr, W. M.
Wiktorowicz, G.
Miller, M. Coleman
Farr, B.
Lasota, J. -P.
Publication Year :
2017

Abstract

All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported from the O1/O2 runs have near zero effective spins. There are only three potential explanations of this fact. If the BH spin magnitudes are large then (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Or, (iii) the BH spin magnitudes are small. We test the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, include revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can match simultaneously the observed BH-BH merger rate density, BH masses, and effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be a key in better reproducing the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely overestimated if the merger GW170729 hosts a BH more massive than 50 Msun. We also estimate rate of BH-NS mergers from recent LIGO/Virgo observations. Our updated models of BH-BH, BH-NS and NS-NS mergers are now publicly available at www.syntheticuniverse.org.<br />Comment: A&A accepted: revised comparison with LIGO/Virgo (41 pages)

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1363481223
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1051.0004-6361.201936528