Back to Search Start Over

Statistical Models and Data Structures for Spatial Data on Road Networks

Authors :
Gilardi, A
BORGONI, RICCARDO
GILARDI, ANDREA
Gilardi, A
BORGONI, RICCARDO
GILARDI, ANDREA
Publication Year :
2021

Abstract

Negli ultimi anni è nato un interesse sempre crescente verso l’analisi statistica di dati spaziali aventi supporto di network. Gli esempi più classici di questa tipologia di eventi sono, ad esempio, gli incidenti stradali, i furti di auto, i crimini, e gli interventi delle ambulanze, mentre le linee che compongono la network rappresentano tipicamente le strade, i fiumi, i binari della ferrovia, oppure le terminazioni nervose. L’analisi di questi fenomeni è interessante sotto diversi punti di vista. Innanzitutto, i modelli statistici presentano diverse problematiche legate al supporto spaziale. Per questo motivo, negli ultimi anni sono stati pubblicati diversi paper che mostrano le difficoltà principali legate alla natura stessa della network. Inoltre, il recente sviluppo di database spaziali open source (quali Open Street Map) ha permesso il download e la creazione di dataset che coprono le reti stradali di quasi tutto il mondo. L’enorme mole di dati e gli (inevitabili) errori geometrici presenti nei database di Open Street Map rappresentano due problematiche ulteriori. Infine, dato che al momento la maggior parte dei pacchetti R per l’analisi di dati su network sono ancora in fase di sviluppo, esistono anche diverse difficoltà computazionali e problemi nell’implementazione di metodologie nuove. Questo lavoro di tesi riassume quattro articoli che presentano strutture dati e metodologie statistiche per l’analisi di dati spaziali aventi supporto di network, considerando sia un approccio di tipo network-lattice che un approccio di tipo point-pattern. Il primo paper presenta una revisione bibliografica dei pacchetti R che implementano classi e funzioni per l’analisi di network stradali, concentrandosi in particolare su stplanr e dodgr. Vengono introdotte le principali routines legate al calcolo di shortest paths e centrality measures utilizzando dataset via via più complessi. Il secondo lavoro presenta un modello di Poisson Dinamico Zero Inflated per la stima di d<br />In the last years, we observed a surge of interest in the statistical analysis of spatial data lying on or alongside networks. Car crashes, vehicle thefts, bicycle incidents, roadside kiosks, neuroanatomical features, and ambulance interventions are just a few of the most typical examples, whereas the edges of the network represent an abstraction of roads, rivers, railways, cargo-ship routes or nerve fibers. This type of data is interesting for several reasons. First, the statistical analysis of the events presents several challenges because of the complex and non-homogeneous nature of the network, which creates unique methodological problems. Several authors discussed and illustrated the common pitfalls of re-adapting classical planar spatial models to network data. Second, the rapid development of open-source spatial databases (such as Open Street Map) provides the starting point for creating road networks at a wide range of spatial scales. The size and volume of the data raise complex computational problems, while common geometrical errors in the network’s software representations create another source of complexity. Third, at the time of writing, the most important software routines and functions (mainly implemented in R) are still in the process of being re-written and readapted for the new spatial support. This manuscript collects four articles presenting data structures and statistical models to analyse spatial data lying on road networks using point-pattern and network-lattice approaches. The first paper reviews classes, vital pre-processing steps and software representations to manipulate road network data. In particular, it focuses on the R packages stplanr and dodgr, highlighting their main functionalities, such as shortest paths or centrality measures, using a range of datasets, from a roundabout to a complete network covering an urban city. The second paper proposes the adoption of two indices for assessing the risk of car crashes on the street network

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1364261754
Document Type :
Electronic Resource