Back to Search Start Over

Charge-transfer energy in iridates: A hard x-ray photoelectron spectroscopy study

Authors :
Takegami, D.
Kasinathan, D.
Wolff, K. K.
Altendorf, S. G.
Chang, C. F.
Hoefer, K.
Melendez-Sans, A.
Utsumi, Y.
Meneghin, F.
Ha, T. D.
Yen, C. H.
Chen, K.
Kuo, C. Y.
Liao, Y. F.
Tsuei, K. D.
Morrow, R.
Wurmehl, S.
Buechner, B.
Prasad, B. E.
Jansen, M.
Komarek, A. C.
Hansmann, P.
Tjeng, L. H.
Takegami, D.
Kasinathan, D.
Wolff, K. K.
Altendorf, S. G.
Chang, C. F.
Hoefer, K.
Melendez-Sans, A.
Utsumi, Y.
Meneghin, F.
Ha, T. D.
Yen, C. H.
Chen, K.
Kuo, C. Y.
Liao, Y. F.
Tsuei, K. D.
Morrow, R.
Wurmehl, S.
Buechner, B.
Prasad, B. E.
Jansen, M.
Komarek, A. C.
Hansmann, P.
Tjeng, L. H.
Publication Year :
2020

Abstract

We have investigated the electronic structure of iridates in the double perovskite crystal structure containing either Ir4+ or Ir5+ using hard x-ray photoelectron spectroscopy. The experimental valence band spectra can be well reproduced using tight-binding calculations including only the Ir 5d, O 2p, and O 2s orbitals with parameters based on the downfolding of the density-functional band structure results. We found that, regardless of the A and B cations, the A(2)BIrO(6) iridates have essentially zero O 2p to Ir 5d charge-transfer energies. Hence double perovskite iridates turn out to be extremely covalent systems with the consequence being that the magnetic exchange interactions become very long ranged, thereby hampering the materialization of the long-sought Kitaev physics. Nevertheless, it still would be possible to realize a spin-liquid system using the iridates with a proper tuning of the various competing exchange interactions.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1364932373
Document Type :
Electronic Resource