Back to Search Start Over

Machine learning techniques to characterise functional traits of plankton image data

Authors :
Orenstein, Eric
Ayata, Sakina-Dorothée
Maps, Frédéric
Becker, Érica
Benedetti, Fabio
Biard, Tristan
de Garidel-Thoron, Thibault
Ellen, Jeffrey
Ferrario, Filippo
Giering, Sarah
Guy-Haim, Tamar
Hoebeke, Laura
Iversen, Morten
Kiorboe, Thomas
Lalonde, Jean-Francois
Lana, Arancha
Laviale, Martin
Lombard, Fabien
Lorimer, Tom
Martini, Séverine
Meyer, Albin
Möller, Klas Ove
Niehoff, Barbara
Ohman, Mark
Pradalier, Cédric
Romagnan, Jean-Baptiste
Schröder, Simon-Martin
Sonnet, Virginie
Sosik, Heidi
Stemmann, Lars
Stock, Michiel
Terbiyik-Kurt, Tuba
Valcárcel-Pérez, Nerea
Vilgrain, Laure
Wacquet, Guillaume
Waite, Anya
Irisson, Jean-Olivier
Orenstein, Eric
Ayata, Sakina-Dorothée
Maps, Frédéric
Becker, Érica
Benedetti, Fabio
Biard, Tristan
de Garidel-Thoron, Thibault
Ellen, Jeffrey
Ferrario, Filippo
Giering, Sarah
Guy-Haim, Tamar
Hoebeke, Laura
Iversen, Morten
Kiorboe, Thomas
Lalonde, Jean-Francois
Lana, Arancha
Laviale, Martin
Lombard, Fabien
Lorimer, Tom
Martini, Séverine
Meyer, Albin
Möller, Klas Ove
Niehoff, Barbara
Ohman, Mark
Pradalier, Cédric
Romagnan, Jean-Baptiste
Schröder, Simon-Martin
Sonnet, Virginie
Sosik, Heidi
Stemmann, Lars
Stock, Michiel
Terbiyik-Kurt, Tuba
Valcárcel-Pérez, Nerea
Vilgrain, Laure
Wacquet, Guillaume
Waite, Anya
Irisson, Jean-Olivier
Source :
EPIC3Limnology and Oceanography, AMER SOC LIMNOLOGY OCEANOGRAPHY, ISSN: 0024-3590
Publication Year :
2022

Abstract

Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.

Details

Database :
OAIster
Journal :
EPIC3Limnology and Oceanography, AMER SOC LIMNOLOGY OCEANOGRAPHY, ISSN: 0024-3590
Publication Type :
Electronic Resource
Accession number :
edsoai.on1365538364
Document Type :
Electronic Resource