Back to Search Start Over

Stabbing segments with rectilinear objects

Authors :
Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Universidad de Sevilla. FQM164: Matemática Discreta: Teoría de Grafos y Geometría Computacional
Claverol Aguas, Mercé
Garijo Royo, Delia
Korman, Matias
Seara Ojea, Carlos
Silveira Isoba, Rodrigo Ignacio
Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Universidad de Sevilla. FQM164: Matemática Discreta: Teoría de Grafos y Geometría Computacional
Claverol Aguas, Mercé
Garijo Royo, Delia
Korman, Matias
Seara Ojea, Carlos
Silveira Isoba, Rodrigo Ignacio
Publication Year :
2017

Abstract

Given a set S of n line segments in the plane, we say that a region R R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for reporting all combinatorially di erent stabbers for several shapes of stabbers. Speci cally, we consider the case in which the stabber can be described as the intersection of axis-parallel halfplanes (thus the stabbers are halfplanes, strips, quadrants, 3-sided rectangles, or rectangles). The running times are O(n) (for the halfplane case), O(n log n) (for strips, quadrants, and 3-sided rectangles), and O(n2 log n) (for rectangles).

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367020942
Document Type :
Electronic Resource