Back to Search Start Over

Analysis of in vitro evolution reveals the underlying distribution of catalytic activity among random sequences.

Authors :
Pressman, Abe
Pressman, Abe
Moretti, Janina E
Campbell, Gregory W
Müller, Ulrich F
Chen, Irene A
Pressman, Abe
Pressman, Abe
Moretti, Janina E
Campbell, Gregory W
Müller, Ulrich F
Chen, Irene A
Source :
Nucleic acids research; vol 45, iss 14, 8167-8179; 0305-1048
Publication Year :
2017

Abstract

The emergence of catalytic RNA is believed to have been a key event during the origin of life. Understanding how catalytic activity is distributed across random sequences is fundamental to estimating the probability that catalytic sequences would emerge. Here, we analyze the in vitro evolution of triphosphorylating ribozymes and translate their fitnesses into absolute estimates of catalytic activity for hundreds of ribozyme families. The analysis efficiently identified highly active ribozymes and estimated catalytic activity with good accuracy. The evolutionary dynamics follow Fisher's Fundamental Theorem of Natural Selection and a corollary, permitting retrospective inference of the distribution of fitness and activity in the random sequence pool for the first time. The frequency distribution of rate constants appears to be log-normal, with a surprisingly steep dropoff at higher activity, consistent with a mechanism for the emergence of activity as the product of many independent contributions.

Details

Database :
OAIster
Journal :
Nucleic acids research; vol 45, iss 14, 8167-8179; 0305-1048
Notes :
Nucleic acids research vol 45, iss 14, 8167-8179 0305-1048
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367421407
Document Type :
Electronic Resource