Back to Search Start Over

A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.

Authors :
Yao, Zizhen
Yao, Zizhen
Liu, Hanqing
Xie, Fangming
Fischer, Stephan
Adkins, Ricky S
Aldridge, Andrew I
Ament, Seth A
Bartlett, Anna
Behrens, M Margarita
Van den Berge, Koen
Bertagnolli, Darren
de Bézieux, Hector Roux
Biancalani, Tommaso
Booeshaghi, A Sina
Bravo, Héctor Corrada
Casper, Tamara
Colantuoni, Carlo
Crabtree, Jonathan
Creasy, Heather
Crichton, Kirsten
Crow, Megan
Dee, Nick
Dougherty, Elizabeth L
Doyle, Wayne I
Dudoit, Sandrine
Fang, Rongxin
Felix, Victor
Fong, Olivia
Giglio, Michelle
Goldy, Jeff
Hawrylycz, Mike
Herb, Brian R
Hertzano, Ronna
Hou, Xiaomeng
Hu, Qiwen
Kancherla, Jayaram
Kroll, Matthew
Lathia, Kanan
Li, Yang Eric
Lucero, Jacinta D
Luo, Chongyuan
Mahurkar, Anup
McMillen, Delissa
Nadaf, Naeem M
Nery, Joseph R
Nguyen, Thuc Nghi
Niu, Sheng-Yong
Ntranos, Vasilis
Orvis, Joshua
Osteen, Julia K
Pham, Thanh
Pinto-Duarte, Antonio
Poirion, Olivier
Preissl, Sebastian
Purdom, Elizabeth
Rimorin, Christine
Risso, Davide
Rivkin, Angeline C
Smith, Kimberly
Street, Kelly
Sulc, Josef
Svensson, Valentine
Tieu, Michael
Torkelson, Amy
Tung, Herman
Vaishnav, Eeshit Dhaval
Vanderburg, Charles R
van Velthoven, Cindy
Wang, Xinxin
White, Owen R
Huang, Z Josh
Kharchenko, Peter V
Pachter, Lior
Ngai, John
Regev, Aviv
Tasic, Bosiljka
Welch, Joshua D
Gillis, Jesse
Macosko, Evan Z
Ren, Bing
Ecker, Joseph R
Zeng, Hongkui
Mukamel, Eran A
Yao, Zizhen
Yao, Zizhen
Liu, Hanqing
Xie, Fangming
Fischer, Stephan
Adkins, Ricky S
Aldridge, Andrew I
Ament, Seth A
Bartlett, Anna
Behrens, M Margarita
Van den Berge, Koen
Bertagnolli, Darren
de Bézieux, Hector Roux
Biancalani, Tommaso
Booeshaghi, A Sina
Bravo, Héctor Corrada
Casper, Tamara
Colantuoni, Carlo
Crabtree, Jonathan
Creasy, Heather
Crichton, Kirsten
Crow, Megan
Dee, Nick
Dougherty, Elizabeth L
Doyle, Wayne I
Dudoit, Sandrine
Fang, Rongxin
Felix, Victor
Fong, Olivia
Giglio, Michelle
Goldy, Jeff
Hawrylycz, Mike
Herb, Brian R
Hertzano, Ronna
Hou, Xiaomeng
Hu, Qiwen
Kancherla, Jayaram
Kroll, Matthew
Lathia, Kanan
Li, Yang Eric
Lucero, Jacinta D
Luo, Chongyuan
Mahurkar, Anup
McMillen, Delissa
Nadaf, Naeem M
Nery, Joseph R
Nguyen, Thuc Nghi
Niu, Sheng-Yong
Ntranos, Vasilis
Orvis, Joshua
Osteen, Julia K
Pham, Thanh
Pinto-Duarte, Antonio
Poirion, Olivier
Preissl, Sebastian
Purdom, Elizabeth
Rimorin, Christine
Risso, Davide
Rivkin, Angeline C
Smith, Kimberly
Street, Kelly
Sulc, Josef
Svensson, Valentine
Tieu, Michael
Torkelson, Amy
Tung, Herman
Vaishnav, Eeshit Dhaval
Vanderburg, Charles R
van Velthoven, Cindy
Wang, Xinxin
White, Owen R
Huang, Z Josh
Kharchenko, Peter V
Pachter, Lior
Ngai, John
Regev, Aviv
Tasic, Bosiljka
Welch, Joshua D
Gillis, Jesse
Macosko, Evan Z
Ren, Bing
Ecker, Joseph R
Zeng, Hongkui
Mukamel, Eran A
Source :
Nature; vol 598, iss 7879, 103-110; 0028-0836
Publication Year :
2021

Abstract

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.

Details

Database :
OAIster
Journal :
Nature; vol 598, iss 7879, 103-110; 0028-0836
Notes :
application/pdf, Nature vol 598, iss 7879, 103-110 0028-0836
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367448183
Document Type :
Electronic Resource