Back to Search
Start Over
Three-dimensional myocardial strain correlates with murine left ventricular remodelling severity post-infarction.
- Source :
- Journal of the Royal Society, Interface; vol 16, iss 160, 20190570; 1742-5689
- Publication Year :
- 2019
-
Abstract
- Heart failure continues to be a common and deadly sequela of myocardial infarction (MI). Despite strong evidence suggesting the importance of myocardial mechanics in cardiac remodelling, many MI studies still rely on two-dimensional analyses to estimate global left ventricular (LV) function. Here, we integrated four-dimensional ultrasound with three-dimensional strain mapping to longitudinally characterize LV mechanics within and around infarcts in order to study the post-MI remodelling process. To induce infarcts with varying severities, we separated 15 mice into three equal-sized groups: (i) sham, (ii) 30 min ischaemia-reperfusion, and (iii) permanent ligation of the left coronary artery. Four-dimensional ultrasound from a high-frequency small animal system was used to monitor changes in LV geometry, function and strain over 28 days. We reconstructed three-dimensional myocardial strain maps and showed that strain profiles at the infarct border followed a sigmoidal behaviour. We also identified that mice with mild remodelling had significantly higher strains in the infarcted myocardium than those with severe injury. Finally, we developed a new approach to non-invasively estimate infarct size from strain maps, which correlated well with histological results. Taken together, the presented work provides a thorough approach to quantify regional strain, an important component when assessing post-MI remodelling.
Details
- Database :
- OAIster
- Journal :
- Journal of the Royal Society, Interface; vol 16, iss 160, 20190570; 1742-5689
- Notes :
- application/pdf, Journal of the Royal Society, Interface vol 16, iss 160, 20190570 1742-5689
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1367448341
- Document Type :
- Electronic Resource