Back to Search Start Over

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain:A review

Authors :
Berger, Katja
Machwitz, Miriam
Kycko, Marlena
Kefauver, Shawn C.
Van Wittenberghe, Shari
Gerhards, Max
Verrelst, Jochem
Atzberger, Clement
van der Tol, Christiaan
Damm, Alexander
Rascher, Uwe
Herrmann, Ittai
Paz, Veronica Sobejano
Fahrner, Sven
Pieruschka, Roland
Prikaziuk, Egor
Buchaillot, Ma. Luisa
Halabuk, Andrej
Celesti, Marco
Koren, Gerbrand
Gormus, Esra Tunc
Rossini, Micol
Foerster, Michael
Siegmann, Bastian
Abdelbaki, Asmaa
Tagliabue, Giulia
Hank, Tobias
Darvishzadeh, Roshanak
Aasen, Helge
Garcia, Monica
Pôças, Isabel
Bandopadhyay, Subhajit
Sulis, Mauro
Tomelleri, Enrico
Rozenstein, Offer
Filchev, Lachezar
Stancile, Gheorghe
Schlerf, Martin
Berger, Katja
Machwitz, Miriam
Kycko, Marlena
Kefauver, Shawn C.
Van Wittenberghe, Shari
Gerhards, Max
Verrelst, Jochem
Atzberger, Clement
van der Tol, Christiaan
Damm, Alexander
Rascher, Uwe
Herrmann, Ittai
Paz, Veronica Sobejano
Fahrner, Sven
Pieruschka, Roland
Prikaziuk, Egor
Buchaillot, Ma. Luisa
Halabuk, Andrej
Celesti, Marco
Koren, Gerbrand
Gormus, Esra Tunc
Rossini, Micol
Foerster, Michael
Siegmann, Bastian
Abdelbaki, Asmaa
Tagliabue, Giulia
Hank, Tobias
Darvishzadeh, Roshanak
Aasen, Helge
Garcia, Monica
Pôças, Isabel
Bandopadhyay, Subhajit
Sulis, Mauro
Tomelleri, Enrico
Rozenstein, Offer
Filchev, Lachezar
Stancile, Gheorghe
Schlerf, Martin
Source :
Berger , K , Machwitz , M , Kycko , M , Kefauver , S C , Van Wittenberghe , S , Gerhards , M , Verrelst , J , Atzberger , C , van der Tol , C , Damm , A , Rascher , U , Herrmann , I , Paz , V S , Fahrner , S , Pieruschka , R , Prikaziuk , E , Buchaillot , M L , Halabuk , A , Celesti , M , Koren , G , Gormus , E T , Rossini , M , Foerster , M , Siegmann , B , Abdelbaki , A , Tagliabue , G , Hank , T , Darvishzadeh , R , Aasen , H , Garcia , M , Pôças , I , Bandopadhyay , S , Sulis , M , Tomelleri , E , Rozenstein , O , Filchev , L , Stancile , G & Schlerf , M 2022 , ' Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain : A review ' , Remote Sensing of Environment , vol. 280 , 113198 .
Publication Year :
2022

Abstract

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analys

Details

Database :
OAIster
Journal :
Berger , K , Machwitz , M , Kycko , M , Kefauver , S C , Van Wittenberghe , S , Gerhards , M , Verrelst , J , Atzberger , C , van der Tol , C , Damm , A , Rascher , U , Herrmann , I , Paz , V S , Fahrner , S , Pieruschka , R , Prikaziuk , E , Buchaillot , M L , Halabuk , A , Celesti , M , Koren , G , Gormus , E T , Rossini , M , Foerster , M , Siegmann , B , Abdelbaki , A , Tagliabue , G , Hank , T , Darvishzadeh , R , Aasen , H , Garcia , M , Pôças , I , Bandopadhyay , S , Sulis , M , Tomelleri , E , Rozenstein , O , Filchev , L , Stancile , G & Schlerf , M 2022 , ' Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain : A review ' , Remote Sensing of Environment , vol. 280 , 113198 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1372615810
Document Type :
Electronic Resource