Cite
Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients
MLA
De Lorenzis, Enrico, et al. Chronic Related Group Classification System as a New Public Health Tool to Predict Risk and Outcome of COVID-19 in Patients with Systemic Rheumatic Diseases: A Population-Based Study of More than Forty Thousand Patients. 2022. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsoai&AN=edsoai.on1372910363&authtype=sso&custid=ns315887.
APA
De Lorenzis, E., Parente, P., Natalello, G., Soldati, S., Bosello, S. L., Barbara, A., Sorge, C., Axelrod, S., Verardi, L., Cerasuolo, P. G., Peluso, G., Gemma, A., Davoli, M., Biliotti, D., Bruzzese, V., Goletti, M., Di Martino, M., D’Agostino, M. A., Bosello, S. L. (ORCID:0000-0002-4837-447X), & D’Agostino, M. A. (ORCID:0000-0002-5347-0060). (2022). Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients.
Chicago
De Lorenzis, Enrico, Paolo Parente, Gerlando Natalello, Salvatore Soldati, Silvia Laura Bosello, Andrea Barbara, Chiara Sorge, et al. 2022. “Chronic Related Group Classification System as a New Public Health Tool to Predict Risk and Outcome of COVID-19 in Patients with Systemic Rheumatic Diseases: A Population-Based Study of More than Forty Thousand Patients.” http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsoai&AN=edsoai.on1372910363&authtype=sso&custid=ns315887.