Back to Search Start Over

From bench to cell: A roadmap for assessing the bioorthogonal 'click' reactivity of magnetic nanoparticles for cell surface engineering

Authors :
Ministerio de Ciencia, Innovación y Universidades (España)
European Commission
Agencia Estatal de Investigación (España)
Ministerio de Economía y Competitividad (España)
Ministerio de Economía, Industria y Competitividad (España)
Eusko Jaurlaritza
Gobierno de Aragón
Ministerio de Universidades (España)
Fundação para a Ciência e a Tecnologia (Portugal)
Diputación General de Aragón
Idiago López, Francisco Javier
Moreno Antolín, Eduardo
Eceiza, Maite
Aizpurua, Jesús M.
Grazú, Valeria
Fuente, Jesús M. de la
Fratila, Raluca M.
Ministerio de Ciencia, Innovación y Universidades (España)
European Commission
Agencia Estatal de Investigación (España)
Ministerio de Economía y Competitividad (España)
Ministerio de Economía, Industria y Competitividad (España)
Eusko Jaurlaritza
Gobierno de Aragón
Ministerio de Universidades (España)
Fundação para a Ciência e a Tecnologia (Portugal)
Diputación General de Aragón
Idiago López, Francisco Javier
Moreno Antolín, Eduardo
Eceiza, Maite
Aizpurua, Jesús M.
Grazú, Valeria
Fuente, Jesús M. de la
Fratila, Raluca M.
Publication Year :
2022

Abstract

In this work, we report the use of bioorthogonal chemistry, specifically the strain-promoted click azide–alkyne cycloaddition (SPAAC) for the covalent attachment of magnetic nanoparticles (MNPs) on living cell membranes. Four types of MNPs were prepared, functionalized with two different stabilizing/passivation agents (a polyethylene glycol derivative and a glucopyranoside derivative, respectively) and two types of strained alkynes with different reactivities: a cyclooctyne (CO) derivative and a dibenzocyclooctyne (DBCO) derivative. The MNPs were extensively characterized in terms of physicochemical characteristics, colloidal stability, and click reactivity in suspension. Then, the reactivity of the MNPs toward azide-modified surfaces was evaluated as a closer approach to their final application in a living cell scenario. Finally, the DBCO-modified MNPs, showing superior reactivity in suspension and on surfaces, were selected for cell membrane immobilization via the SPAAC reaction on the membranes of cells engineered to express azide artificial reporters. Overall, our work provides useful insights into the appropriate surface engineering of nanoparticles to ensure a high performance in terms of bioorthogonal reactivity for biological applications.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1373150359
Document Type :
Electronic Resource