Back to Search Start Over

The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

Authors :
Marinescu, Razvan V.
Oxtoby, Neil P.
Young, Alexandra L.
Bron, Esther E.
Toga, Arthur W.
Weiner, Michael W.
Barkhof, Frederik
Fox, Nick C.
Eshaghi, Arman
Toni, Tina
Salaterski, Marcin
Lunina, Veronika
Ansart, Manon
Durrleman, Stanley
Lu, Pascal
Iddi, Samuel
Li, Dan
Thompson, Wesley K.
Donohue, Michael C.
Nahon, Aviv
Levy, Yarden
Halbersberg, Dan
Cohen, Mariya
Liao, Huiling
Li, Tengfei
Yu, Kaixian
Zhu, Hongtu
Tamez-Peña, José G.
Ismail, Aya
Wood, Timothy
Bravo, Hector Corrada
Nguyen, Minh
Sun, Nanbo
Feng, Jiashi
Yeo, B.T. Thomas
Chen, Gang
Qi, Ke
Chen, Shiyang
Qiu, Deqiang
Buciuman, Ionut
Kelner, Alex
Pop, Raluca
Rimocea, Denisa
Ghazi, Mostafa M.
Nielsen, Mads
Ourselin, Sebastien
Sørensen, Lauge
Venkatraghavan, Vikram
Liu, Keli
Rabe, Christina
Manser, Paul
Hill, Steven M.
Howlett, James
Huang, Zhiyue
Kiddle, Steven
Mukherjee, Sach
Rouanet, Anaïs
Taschler, Bernd
Tom, Brian D. M.
White, Simon R.
Faux, Noel
Sedai, Suman
de Velasco Oriol, Javier
Clemente, Edgar E. V.
Estrada, Karol
Aksman, Leon
Altmann, Andre
Stonnington, Cynthia M.
Wang, Yalin
Wu, Jianfeng
Devadas, Vivek
Fourrier, Clementine
Raket, Lars Lau
Sotiras, Aristeidis
Erus, Guray
Doshi, Jimit
Davatzikos, Christos
Vogel, Jacob
Doyle, Andrew
Tam, Angela
Diaz-Papkovich, Alex
Jammeh, Emmanuel
Koval, Igor
Moore, Paul
Lyons, Terry J.
Gallacher, John
Tohka, Jussi
Ciszek, Robert
Jedynak, Bruno
Pandya, Kruti
Bilgel, Murat
Engels, William
Cole, Joseph
Golland, Polina
Klein, Stefan
Alexander, Daniel C.
Marinescu, Razvan V.
Oxtoby, Neil P.
Young, Alexandra L.
Bron, Esther E.
Toga, Arthur W.
Weiner, Michael W.
Barkhof, Frederik
Fox, Nick C.
Eshaghi, Arman
Toni, Tina
Salaterski, Marcin
Lunina, Veronika
Ansart, Manon
Durrleman, Stanley
Lu, Pascal
Iddi, Samuel
Li, Dan
Thompson, Wesley K.
Donohue, Michael C.
Nahon, Aviv
Levy, Yarden
Halbersberg, Dan
Cohen, Mariya
Liao, Huiling
Li, Tengfei
Yu, Kaixian
Zhu, Hongtu
Tamez-Peña, José G.
Ismail, Aya
Wood, Timothy
Bravo, Hector Corrada
Nguyen, Minh
Sun, Nanbo
Feng, Jiashi
Yeo, B.T. Thomas
Chen, Gang
Qi, Ke
Chen, Shiyang
Qiu, Deqiang
Buciuman, Ionut
Kelner, Alex
Pop, Raluca
Rimocea, Denisa
Ghazi, Mostafa M.
Nielsen, Mads
Ourselin, Sebastien
Sørensen, Lauge
Venkatraghavan, Vikram
Liu, Keli
Rabe, Christina
Manser, Paul
Hill, Steven M.
Howlett, James
Huang, Zhiyue
Kiddle, Steven
Mukherjee, Sach
Rouanet, Anaïs
Taschler, Bernd
Tom, Brian D. M.
White, Simon R.
Faux, Noel
Sedai, Suman
de Velasco Oriol, Javier
Clemente, Edgar E. V.
Estrada, Karol
Aksman, Leon
Altmann, Andre
Stonnington, Cynthia M.
Wang, Yalin
Wu, Jianfeng
Devadas, Vivek
Fourrier, Clementine
Raket, Lars Lau
Sotiras, Aristeidis
Erus, Guray
Doshi, Jimit
Davatzikos, Christos
Vogel, Jacob
Doyle, Andrew
Tam, Angela
Diaz-Papkovich, Alex
Jammeh, Emmanuel
Koval, Igor
Moore, Paul
Lyons, Terry J.
Gallacher, John
Tohka, Jussi
Ciszek, Robert
Jedynak, Bruno
Pandya, Kruti
Bilgel, Murat
Engels, William
Cole, Joseph
Golland, Polina
Klein, Stefan
Alexander, Daniel C.
Source :
Marinescu , R V , Oxtoby , N P , Young , A L , Bron , E E , Toga , A W , Weiner , M W , Barkhof , F , Fox , N C , Eshaghi , A , Toni , T , Salaterski , M , Lunina , V , Ansart , M , Durrleman , S , Lu , P , Iddi , S , Li , D , Thompson , W K , Donohue , M C , Nahon , A , Levy , Y , Halbersberg , D , Cohen , M , Liao , H , Li , T , Yu , K , Zhu , H , Tamez-Peña , J G , Ismail , A , Wood , T , Bravo , H C , Nguyen , M , Sun , N , Feng , J , Yeo , B T T , Chen , G , Qi , K , Chen , S , Qiu , D , Buciuman , I , Kelner , A , Pop , R , Rimocea , D , Ghazi , M M , Nielsen , M , Ourselin , S , Sørensen , L , Venkatraghavan , V , Liu , K , Rabe , C , Manser , P , Hill , S M , Howlett , J , Huang , Z , Kiddle , S , Mukherjee , S , Rouanet , A , Taschler , B , Tom , B D M , White , S R , Faux , N , Sedai , S , de Velasco Oriol , J , Clemente , E E V , Estrada , K , Aksman , L , Altmann , A , Stonnington , C M , Wang , Y , Wu , J , Devadas , V , Fourrier , C , Raket , L L , Sotiras , A , Erus , G , Doshi , J , Davatzikos , C , Vogel , J , Doyle , A , Tam , A , Diaz-Papkovich , A , Jammeh , E , Koval , I , Moore , P , Lyons , T J , Gallacher , J , Tohka , J , Ciszek , R , Jedynak , B , Pandya , K , Bilgel , M , Engels , W , Cole , J , Golland , P , Klein , S & Alexander , D C 2021 , ' The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up ' , Machine Learning for Biomedical Imaging , vol. 1 . <
Publication Year :
2021

Abstract

Accurate prediction of progression in subjects at risk of Alzheimer&#39;s disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for predicting disease onset and progression is currently lacking. We present the findings of &quot;The Alzheimer&#39;s Disease Prediction Of Longitudinal Evolution&quot; (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer&#39;s disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer&#39;s Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of patient-specific biomarkers. On a limited, cross-sectional subset of the data emulating clinical trials, performance of the best algorithms at predicting clinical diagnosis decreased only slightly (2 pe

Details

Database :
OAIster
Journal :
Marinescu , R V , Oxtoby , N P , Young , A L , Bron , E E , Toga , A W , Weiner , M W , Barkhof , F , Fox , N C , Eshaghi , A , Toni , T , Salaterski , M , Lunina , V , Ansart , M , Durrleman , S , Lu , P , Iddi , S , Li , D , Thompson , W K , Donohue , M C , Nahon , A , Levy , Y , Halbersberg , D , Cohen , M , Liao , H , Li , T , Yu , K , Zhu , H , Tamez-Peña , J G , Ismail , A , Wood , T , Bravo , H C , Nguyen , M , Sun , N , Feng , J , Yeo , B T T , Chen , G , Qi , K , Chen , S , Qiu , D , Buciuman , I , Kelner , A , Pop , R , Rimocea , D , Ghazi , M M , Nielsen , M , Ourselin , S , S&#248;rensen , L , Venkatraghavan , V , Liu , K , Rabe , C , Manser , P , Hill , S M , Howlett , J , Huang , Z , Kiddle , S , Mukherjee , S , Rouanet , A , Taschler , B , Tom , B D M , White , S R , Faux , N , Sedai , S , de Velasco Oriol , J , Clemente , E E V , Estrada , K , Aksman , L , Altmann , A , Stonnington , C M , Wang , Y , Wu , J , Devadas , V , Fourrier , C , Raket , L L , Sotiras , A , Erus , G , Doshi , J , Davatzikos , C , Vogel , J , Doyle , A , Tam , A , Diaz-Papkovich , A , Jammeh , E , Koval , I , Moore , P , Lyons , T J , Gallacher , J , Tohka , J , Ciszek , R , Jedynak , B , Pandya , K , Bilgel , M , Engels , W , Cole , J , Golland , P , Klein , S &amp; Alexander , D C 2021 , &#39; The Alzheimer&#39;s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up &#39; , Machine Learning for Biomedical Imaging , vol. 1 . <
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1376784012
Document Type :
Electronic Resource