Back to Search
Start Over
The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up
- Source :
- Marinescu , R V , Oxtoby , N P , Young , A L , Bron , E E , Toga , A W , Weiner , M W , Barkhof , F , Fox , N C , Eshaghi , A , Toni , T , Salaterski , M , Lunina , V , Ansart , M , Durrleman , S , Lu , P , Iddi , S , Li , D , Thompson , W K , Donohue , M C , Nahon , A , Levy , Y , Halbersberg , D , Cohen , M , Liao , H , Li , T , Yu , K , Zhu , H , Tamez-Peña , J G , Ismail , A , Wood , T , Bravo , H C , Nguyen , M , Sun , N , Feng , J , Yeo , B T T , Chen , G , Qi , K , Chen , S , Qiu , D , Buciuman , I , Kelner , A , Pop , R , Rimocea , D , Ghazi , M M , Nielsen , M , Ourselin , S , Sørensen , L , Venkatraghavan , V , Liu , K , Rabe , C , Manser , P , Hill , S M , Howlett , J , Huang , Z , Kiddle , S , Mukherjee , S , Rouanet , A , Taschler , B , Tom , B D M , White , S R , Faux , N , Sedai , S , de Velasco Oriol , J , Clemente , E E V , Estrada , K , Aksman , L , Altmann , A , Stonnington , C M , Wang , Y , Wu , J , Devadas , V , Fourrier , C , Raket , L L , Sotiras , A , Erus , G , Doshi , J , Davatzikos , C , Vogel , J , Doyle , A , Tam , A , Diaz-Papkovich , A , Jammeh , E , Koval , I , Moore , P , Lyons , T J , Gallacher , J , Tohka , J , Ciszek , R , Jedynak , B , Pandya , K , Bilgel , M , Engels , W , Cole , J , Golland , P , Klein , S & Alexander , D C 2021 , ' The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up ' , Machine Learning for Biomedical Imaging , vol. 1 . <
- Publication Year :
- 2021
-
Abstract
- Accurate prediction of progression in subjects at risk of Alzheimer's disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for predicting disease onset and progression is currently lacking. We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of patient-specific biomarkers. On a limited, cross-sectional subset of the data emulating clinical trials, performance of the best algorithms at predicting clinical diagnosis decreased only slightly (2 pe
Details
- Database :
- OAIster
- Journal :
- Marinescu , R V , Oxtoby , N P , Young , A L , Bron , E E , Toga , A W , Weiner , M W , Barkhof , F , Fox , N C , Eshaghi , A , Toni , T , Salaterski , M , Lunina , V , Ansart , M , Durrleman , S , Lu , P , Iddi , S , Li , D , Thompson , W K , Donohue , M C , Nahon , A , Levy , Y , Halbersberg , D , Cohen , M , Liao , H , Li , T , Yu , K , Zhu , H , Tamez-Peña , J G , Ismail , A , Wood , T , Bravo , H C , Nguyen , M , Sun , N , Feng , J , Yeo , B T T , Chen , G , Qi , K , Chen , S , Qiu , D , Buciuman , I , Kelner , A , Pop , R , Rimocea , D , Ghazi , M M , Nielsen , M , Ourselin , S , Sørensen , L , Venkatraghavan , V , Liu , K , Rabe , C , Manser , P , Hill , S M , Howlett , J , Huang , Z , Kiddle , S , Mukherjee , S , Rouanet , A , Taschler , B , Tom , B D M , White , S R , Faux , N , Sedai , S , de Velasco Oriol , J , Clemente , E E V , Estrada , K , Aksman , L , Altmann , A , Stonnington , C M , Wang , Y , Wu , J , Devadas , V , Fourrier , C , Raket , L L , Sotiras , A , Erus , G , Doshi , J , Davatzikos , C , Vogel , J , Doyle , A , Tam , A , Diaz-Papkovich , A , Jammeh , E , Koval , I , Moore , P , Lyons , T J , Gallacher , J , Tohka , J , Ciszek , R , Jedynak , B , Pandya , K , Bilgel , M , Engels , W , Cole , J , Golland , P , Klein , S & Alexander , D C 2021 , ' The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up ' , Machine Learning for Biomedical Imaging , vol. 1 . <
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1376784012
- Document Type :
- Electronic Resource