Back to Search Start Over

Deep learning-based multi-connectivity optimization in cellular networks

Authors :
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils
Hernández Carlón, Juan Jesús
Pérez Romero, Jordi
Sallent Roig, Oriol
Vilà Muñoz, Irene
Casadevall Palacio, Fernando José
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils
Hernández Carlón, Juan Jesús
Pérez Romero, Jordi
Sallent Roig, Oriol
Vilà Muñoz, Irene
Casadevall Palacio, Fernando José
Publication Year :
2022

Abstract

Multi-connectivity emerges as a useful feature to handle the traffic in heterogeneous cellular scenarios and fulfill the demanding requirements in terms of data rate and reliability. It allows a device to be simultaneously connected to multiple cells belonging to different radio access network nodes from a single or multiple radio access technologies. This paper addresses the problem of optimally splitting the traffic among cells when multi-connectivity is used. For this purpose, it proposes the use of deep learning to determine the optimum amount of traffic of a device that needs to be sent through one or another cell depending on the current traffic and radio conditions. Obtained results reveal a promising capability of the proposed Deep Q Network solution to select quasi optimum traffic splits in the considered scenario.<br />This paper is part of ARTIST project (ref. PID2020- 115104RB-I00) funded by MCIN/AEI/10.13039/ 501100011033. The work is also funded by the Spanish Ministry of Science and Innovation under grant ref. PRE2018-084691.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
5 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1379090601
Document Type :
Electronic Resource