Back to Search Start Over

NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

Authors :
National Aeronautics and Space Administration (US)
Defense Advanced Research Projects Agency (US)
NASA Jet Propulsion Laboratory
Agha-mohammadi, Ali-akbar
Otsu, Kyohei
Morrell, Benjamin
Fan, David D.
Thakker, Rohan
Santamaria-Navarro, Àngel
Kim, Sung-Kyun
Bouman, Amanda
Lei, Xianmei
Edlund, Jeffrey A.
Ginting, Fadhil
Ebadi, Kamak
Anderson, Matthew
Pailevanian, Torkom
Terry, Edward
Wolf, Michael
Tagliabue, Andrea
Stegun Vaquero, Tiago
Palieri, Matteo
Tepsuporn, Scott
Chang, Yung
Kalantari, Arash
Chávez, Fernando
López, Brett
Funabiki, Nobuhiro
Miles, Gregory
Touma, Thomas
Buscicchio, Alessandro
Tordesillas, Jesús
Alatur, Nikhilesh
Nash, Jeremy
Walsh, William
Jung, Sunggoo
Lee, Hanseob
Kanellakis, Christoforos
Mayo, John
Harper, Scott
Kaufmann, Marcel
Dixit, Anushri
Correa, Gustavo J.
Lee, Carlyn
Gao, Jay
Merewether, Gene
Maldonado-Contreras, Jairo
Salhotra, Gautam
Saboia, María
Ramtoula, Benjamin
Fakoorian, Seyed
Hatteland, Alexander
Kim, Taeyeon
Bartlett, Tara
Stephens, Alex
Kim, Leon
Bergh, Chuck
Heiden, Eric
Lew, Thomas
Cauligi, Abhishek
Heywood, Tristan
Kramer, Andrew
Leopold, Henry A.
Melikyan, Hov
Choi, Hyungho Chris
Daftry, Shreyansh
Toupet, Olivier
Wee, Inhwan
Thakur, Abhishek
Feras, Micah
Beltrame, Giovanni
Nikolakopoulos, George
Shim, David
Carlone, Luca
Burdick, Joel
National Aeronautics and Space Administration (US)
Defense Advanced Research Projects Agency (US)
NASA Jet Propulsion Laboratory
Agha-mohammadi, Ali-akbar
Otsu, Kyohei
Morrell, Benjamin
Fan, David D.
Thakker, Rohan
Santamaria-Navarro, Àngel
Kim, Sung-Kyun
Bouman, Amanda
Lei, Xianmei
Edlund, Jeffrey A.
Ginting, Fadhil
Ebadi, Kamak
Anderson, Matthew
Pailevanian, Torkom
Terry, Edward
Wolf, Michael
Tagliabue, Andrea
Stegun Vaquero, Tiago
Palieri, Matteo
Tepsuporn, Scott
Chang, Yung
Kalantari, Arash
Chávez, Fernando
López, Brett
Funabiki, Nobuhiro
Miles, Gregory
Touma, Thomas
Buscicchio, Alessandro
Tordesillas, Jesús
Alatur, Nikhilesh
Nash, Jeremy
Walsh, William
Jung, Sunggoo
Lee, Hanseob
Kanellakis, Christoforos
Mayo, John
Harper, Scott
Kaufmann, Marcel
Dixit, Anushri
Correa, Gustavo J.
Lee, Carlyn
Gao, Jay
Merewether, Gene
Maldonado-Contreras, Jairo
Salhotra, Gautam
Saboia, María
Ramtoula, Benjamin
Fakoorian, Seyed
Hatteland, Alexander
Kim, Taeyeon
Bartlett, Tara
Stephens, Alex
Kim, Leon
Bergh, Chuck
Heiden, Eric
Lew, Thomas
Cauligi, Abhishek
Heywood, Tristan
Kramer, Andrew
Leopold, Henry A.
Melikyan, Hov
Choi, Hyungho Chris
Daftry, Shreyansh
Toupet, Olivier
Wee, Inhwan
Thakur, Abhishek
Feras, Micah
Beltrame, Giovanni
Nikolakopoulos, George
Shim, David
Carlone, Luca
Burdick, Joel
Publication Year :
2022

Abstract

This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1380452878
Document Type :
Electronic Resource