Back to Search
Start Over
Fully-Dynamic All-Pairs Shortest Paths: Likely Optimal Worst-Case Update Time
- Publication Year :
- 2023
-
Abstract
- The All-Pairs Shortest Paths (APSP) problem is one of the fundamental problems in theoretical computer science. It asks to compute the distance matrix of a given $n$-vertex graph. We revisit the classical problem of maintaining the distance matrix under a fully dynamic setting undergoing vertex insertions and deletions with a fast worst-case running time and efficient space usage. Although an algorithm with amortized update-time $\tilde O(n ^ 2)$ has been known for nearly two decades [Demetrescu and Italiano, STOC 2003], the current best algorithm for worst-case running time with efficient space usage runs is due to [Gutenberg and Wulff-Nilsen, SODA 2020], which improves the space usage of the previous algorithm due to [Abraham, Chechik, and Krinninger, SODA 2017] to $\tilde O(n ^ 2)$ but fails to improve their running time of $\tilde O(n ^ {2 + 2 / 3})$. It has been conjectured that no algorithm in $O(n ^ {2.5 - \epsilon})$ worst-case update time exists. For graphs without negative cycles, we meet this conjectured lower bound by introducing a Monte Carlo algorithm running in randomized $\tilde O(n ^ {2.5})$ time while keeping the $\tilde O(n ^ 2)$ space bound from the previous algorithm. Our breakthrough is made possible by the idea of ``hop-dominant shortest paths,'' which are shortest paths with a constraint on hops (number of vertices) that remain shortest after we relax the constraint by a constant factor.<br />Comment: Preprint
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1381633448
- Document Type :
- Electronic Resource