Back to Search
Start Over
FedMLSecurity: A Benchmark for Attacks and Defenses in Federated Learning and Federated LLMs
- Publication Year :
- 2023
-
Abstract
- This paper introduces FedSecurity, an end-to-end benchmark designed to simulate adversarial attacks and corresponding defense mechanisms in Federated Learning (FL). FedSecurity comprises two pivotal components: FedAttacker, which facilitates the simulation of a variety of attacks during FL training, and FedDefender, which implements defensive mechanisms to counteract these attacks. As an open-source library, FedSecurity enhances its usability compared to from-scratch implementations that focus on specific attack/defense scenarios based on the following features: i) It offers extensive customization options to accommodate a broad range of machine learning models (e.g., Logistic Regression, ResNet, and GAN) and FL optimizers (e.g., FedAVG, FedOPT, and FedNOVA); ii) it enables exploring the variability in the effectiveness of attacks and defenses across different datasets and models; and iii) it supports flexible configuration and customization through a configuration file and some provided APIs. We further demonstrate FedSecurity's utility and adaptability through federated training of Large Language Models (LLMs), showcasing its potential to impact a wide range of complex applications.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1381634628
- Document Type :
- Electronic Resource