Back to Search
Start Over
Individual differences in hyper-realistic mask detection
-
Abstract
- Hyper-realistic masks present a new challenge to security and crime prevention. We have recently shown that people’s ability to differentiate these masks from real faces is extremely limited. Here we consider individual differences as a means to improve mask detection. Participants categorized single images as masks or real faces in a computer-based task. Experiment 1 revealed poor accuracy (40%) and large individual differences (5–100%) for high-realism masks among low-realism masks and real faces. Individual differences in mask categorization accuracy remained large when the Low-realism condition was eliminated (Experiment 2). Accuracy for mask images was not correlated with accuracy for real face images or with prior knowledge of hyper-realistic face masks. Image analysis revealed that mask and face stimuli were most strongly differentiated in the region below the eyes. Moreover, high-performing participants tracked the differential information in this area, but low-performing participants did not. Like other face tasks (e.g. identification), hyper-realistic mask detection gives rise to large individual differences in performance. Unlike many other face tasks, performance may be localized to a specific image cue.
Details
- Database :
- OAIster
- Notes :
- text, Sanders, Jet G. and Jenkins, Rob (2018) Individual differences in hyper-realistic mask detection. Cognitive Research: Principles and Implicators, 3 (1). ISSN 2365-7464, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1384421216
- Document Type :
- Electronic Resource