Back to Search Start Over

Quantifying Subsurface Flow and Solute Transport in a Snowmelt‐Recharged Hillslope With Multiyear Water Balance

Authors :
Tokunaga, Tetsu K
Tokunaga, Tetsu K
Tran, Anh Phuong
Wan, Jiamin
Dong, Wenming
Newman, Alexander W
Beutler, Curtis A
Brown, Wendy
Henderson, Amanda N
Williams, Kenneth H
Tokunaga, Tetsu K
Tokunaga, Tetsu K
Tran, Anh Phuong
Wan, Jiamin
Dong, Wenming
Newman, Alexander W
Beutler, Curtis A
Brown, Wendy
Henderson, Amanda N
Williams, Kenneth H
Source :
Water Resources Research; vol 58, iss 12; 0043-1397
Publication Year :
2022

Abstract

Quantifying flow and transport from hillslopes is vital for understanding water quantity and quality in rivers, but remains obscure because of limited subsurface measurements. Using measured hydraulic conductivity K profiles and water balance over a single year to calibrate a transmissivity feedback model for a hillslope in the East River watershed (Colorado) proved unsatisfactory for predicting flow over the subsequent years. Well-constrained field-scale K were obtained by optimizing subsurface flux predictions over years having large differences in recharge, and by including estimates of interannual transfer of excess snowmelt recharge. Water and solute exports during high snowmelt recharge occur predominantly via shallow groundwater flow through weathered rock and soil because of their enlarged transmissivities under saturated conditions. Conversely, these shallow pathways are less active in snow drought years when the water table remains deeper within the weathering zone. Hillslope soil water monitoring showed that rainfall does not infiltrate deeply during summer and fall months, and revealed water losses consistent with model ET predictions. By combining water table-dependent fluxes with pore water chemistry in different zones, time-dependent rates of solute exports become predictable. As an example, calibrated K were combined with dissolved nitrogen concentrations in pore waters to show the snowmelt-dependence of reactive nitrogen exported from the hillslope, further supporting the recent finding that the weathering zone is the dominant source of reactive nitrogen at this site. Subsurface export predictions can now be obtained for wide ranges of recharge based on measurements of water table elevation and profiles of pore water chemistry.

Details

Database :
OAIster
Journal :
Water Resources Research; vol 58, iss 12; 0043-1397
Notes :
application/pdf, Water Resources Research vol 58, iss 12 0043-1397
Publication Type :
Electronic Resource
Accession number :
edsoai.on1391585684
Document Type :
Electronic Resource