Back to Search Start Over

Proteomic, mechanical, and biochemical characterization of cartilage development.

Authors :
Bielajew, Benjamin J
Bielajew, Benjamin J
Donahue, Ryan P
Lamkin, Elliott K
Hu, Jerry C
Hascall, Vincent C
Athanasiou, Kyriacos A
Bielajew, Benjamin J
Bielajew, Benjamin J
Donahue, Ryan P
Lamkin, Elliott K
Hu, Jerry C
Hascall, Vincent C
Athanasiou, Kyriacos A
Publication Year :
2022

Abstract

The objective of this work is to examine the development of porcine cartilage by analyzing its mechanical properties, biochemical content, and proteomics at different developmental stages. Cartilage from the knees of fetal, neonatal, juvenile, and mature pigs was analyzed using histology, mechanical testing, biochemical assays, fluorophore-assisted carbohydrate electrophoresis, and bottom-up proteomics. Mature cartilage has 2.2-times the collagen per dry weight of fetal cartilage, and fetal cartilage has 2.1-times and 17.9-times the glycosaminoglycan and DNA per dry weight of mature cartilage, respectively. Tensile and compressive properties peak in the juvenile stage, with a tensile modulus 4.7-times that of neonatal. Proteomics analysis reveals increases in collagen types II and III, while collagen types IX, XI, and XIV, and aggrecan decrease with age. For example, collagen types IX and XI decrease 9.4-times and 5.1-times, respectively from fetal to mature. Mechanical and biochemical measurements have their greatest developmental changes between the neonatal and juvenile stages, where mechanotransduction plays a major role. Bottom-up proteomics serves as a powerful tool for tissue characterization, showing results beyond those of routine biochemical analysis. For example, proteomic analysis shows significant drops in collagen types IX, XI, and XIV throughout development, which shows insight into the permanence of cartilage's matrix. Changes in overall glycosaminoglycan content compared to aggrecan and link protein indicate non-enzymatic degradation of aggrecan structures or hyaluronan in mature cartilage. In addition to tissue characterization, bottom-up proteomics techniques are critical in tissue engineering efforts toward repair or regeneration of cartilage in animal models. STATEMENT OF SIGNIFICANCE: In this study, the development of porcine articular cartilage is interrogated through biomechanical, biochemical, and proteomic techniques, to determine how mecha

Details

Database :
OAIster
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1391589884
Document Type :
Electronic Resource