Back to Search Start Over

MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants

Authors :
Eusko Jaurlaritza
Universidad del País Vasco
Fundación Biofísica Bizkaia
Larrea, Asier
Benito-Vicente, Asier
Fernández-Higuero, José Ángel
Jebari-Benslaiman, Shifa
Galicia-García, Unai
Uribe, Kepa B.
Cenarro, Ana
Ostolaza, Helena
Civeira, Fernando
Arrasate, Sonia
González-Díaz, Humberto
Martín, César
Eusko Jaurlaritza
Universidad del País Vasco
Fundación Biofísica Bizkaia
Larrea, Asier
Benito-Vicente, Asier
Fernández-Higuero, José Ángel
Jebari-Benslaiman, Shifa
Galicia-García, Unai
Uribe, Kepa B.
Cenarro, Ana
Ostolaza, Helena
Civeira, Fernando
Arrasate, Sonia
González-Díaz, Humberto
Martín, César
Publication Year :
2021

Abstract

Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1395197960
Document Type :
Electronic Resource