Back to Search
Start Over
Data Trustworthiness Assessment for Traffic Condition Participatory Sensing Scenario
- Publication Year :
- 2022
-
Abstract
- Participatory Sensing (PS) is a common mode of data collection where valuable data is gathered from many contributors, each providing data from the user’s or the device’s surroundings via a mobile device, such as a smartphone. This has the advantage of cost-efficiency and wide-scale data collection. One of the application areas for PS is the collection of traffic data. The cost of collecting roving sensor data, such as vehicle probe data, is significantly lower than that of traditional stationary sensors such as radar and inductive loops. The collected data could pave the way for providing accurate and high-resolution traffic information that is important to transportation planning. The problem with PS is that it is open, and anyone can register and participate in a sensing task. A malicious user is likely to submit false data without performing the sensing task for personal advantage or, even worse, to attack on a large scale with clear intentions. For example, in real-time traffic monitoring, attackers may report false alerts of traffic jams to divert traffic on the road ahead or directly interfere with the system’s observation and judgment of road conditions, triggering large-scale traffic guidance errors. An efficient method of assessing the trustworthiness of data is therefore required. The trustworthiness problem can be approximated as the problem of anomaly detection in time-series data. Traditional predictive model-based anomaly detection models include univariate models for univariate time series such as Auto Regressive Integrated Moving Average (ARIMA), hypothesis testing, and wavelet analysis, and recurrent neural networks (RNNs) for multiple time series such as Gated Recurrent Unit (GRU) and Long short-term memory (LSTM). When talking about traffic scenarios, some prediction models that consider both spatial and temporal dependencies are likely to perform better than those that only consider temporal dependencies, such as Diffusion Convolutional Recurren<br />Participatory Sensing (PS) är ett vanligt sätt att samla in data där värdefulla data samlas in från många bidragsgivare, som alla tillhandahåller data från användarens eller enhetens omgivning via en mobil enhet, t.ex. en smartphone. Detta har fördelen av kostnadseffektivitet och omfattande datainsamling. Ett av tillämpningsområdena för PS är insamling av trafikdata. Kostnaden för att samla in data från mobila sensorer, t.ex. data från fordonssonderingar, är betydligt lägre än kostnaden för traditionella stationära sensorer, t.ex. radar och induktiva slingor. De insamlade uppgifterna skulle kunna bana väg för att tillhandahålla exakt och högupplöst trafikinformation som är viktig för transportplaneringen. Problemet med deltagande avkänning är att den är öppen och att vem som helst kan registrera sig och delta i en avkänningsuppgift. En illasinnad användare kommer sannolikt att lämna in falska uppgifter utan att utföra avkänningsuppgiften för personlig vinning eller, ännu värre, för att angripa en stor skala med tydliga avsikter. Vid trafikövervakning i realtid kan t.ex. angripare rapportera falska varningar om trafikstockningar för att avleda trafiken på vägen framåt eller direkt störa systemets observation och bedömning av vägförhållanden, vilket kan utlösa storskaliga fel i trafikstyrningen. Det finns därför ett akut behov av en effektiv metod för att bedöma uppgifternas tillförlitlighet. Problemet med trovärdighet kan approximeras som problemet med upptäckt av anomalier i tidsserier. Traditionella modeller för anomalidetektion som bygger på prediktiva modeller omfattar univariata modeller för univariata tidsserier, t.ex. ARIMA (Autoregressive Integrated Moving Average), hypotesprövning och waveletanalys, och återkommande neurala nätverk (RNN) för flera tidsserier, t.ex. GRU (Gated Recurrent Unit) och LSTM (Long short-term memory). När man talar om trafikscenarier kommer vissa prognosmodeller som tar hänsyn till både rumsliga och tidsmässiga beroenden sannolikt at
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1400002233
- Document Type :
- Electronic Resource