Back to Search
Start Over
Independent isotopic fission yields of Cf-252 spontaneous fission via mass measurements at the FRS Ion Catcher
- Publication Year :
- 2023
-
Abstract
- We present first preliminary results of a novel method for measuring independent isotopic fission yields (IIFYs) of spontaneous fission (SF) via direct mass measurements, at the FRS Ion Catcher (FRS -IC) at GSI. Fission products were generated from a Cf-252 source installed in a cryogenic stopping cell, and were identified and counted with the multiple-reflection time-of-flight mass spectrometer (MR-TOR-MS) of the FRS-IC, utilizing well-established measurement and data analysis methods. The MR-TOR-MS resolves isobars unambiguously, even with limited statistics, and its non-scanning nature ensures minimal relative systematic uncertainties amongst fission products. The analysis for extracting IIFYs includes isotope-dependent efficiency corrections for all components of the FRS -IC. In particular, we applied a self-consistent technique that takes into account the element-dependent survival efficiencies in the CSC, due to chemical reactions with the buffer gas. Our IIFY results, which cover several tens of fission products in the less -accessible high-mass peak (Z = 56 to 63) down to fission yields at the level of 10(-5), are generally similar to those of the nuclear database ENDF/B-VII.O. Nevertheless, they reveal some structures that are not observed in the database smooth trends. These are the first results of a planned campaign to investigate IIFY distributions of spontaneous fission at the FRS-IC. Upcoming experiments will extend our results to wider Z and N ranges, lower fission yields, and other spontaneously-fissioning actinides.
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1400064806
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1051.epjconf.202328404005