Back to Search
Start Over
Pathogenic antibody response to glucose-6-phosphate isomerase targets a modified epitope uniquely exposed on joint cartilage
- Publication Year :
- 2023
-
Abstract
- Objectives: To identify the arthritogenic B cell epitopes of glucose-6-phosphate isomerase (GPI) and their association with rheumatoid arthritis (RA). Methods: IgG response towards a library of GPI peptides in patients with early RA, pre-symptomatic individuals and population controls, as well as in mice, were tested by bead-based multiplex immunoassays and ELISA. Monoclonal IgG were generated, and the binding specificity and affinity were determined by ELISA, gel size exclusion chromatography, surface plasma resonance and X-ray crystallography. Arthritogenicity was investigated by passive transfer experiments. Antigen-specific B cells were identified by peptide tetramer staining. Results: Peptide GPI293-307 was the dominant B cell epitope in K/BxN and GPI-immunised mice. We could detect B cells and low levels of IgM antibodies binding the GPI293-307 epitopes, and high affinity anti-GPI293-307 IgG antibodies already 7 days after GPI immunisation, immediately before arthritis onset. Transfer of anti-GPI293-307 IgG antibodies induced arthritis in mice. Moreover, anti-GPI293-307 IgG antibodies were more frequent in individuals prior to RA onset (19%) than in controls (7.5%). GPI293-307-specific antibodies were associated with radiographic joint damage. Crystal structures of the Fab-peptide complex revealed that this epitope is not exposed in native GPI but requires conformational change of the protein in inflamed joint for effective recognition by anti-GPI293-307 antibodies. Conclusions: We have identified the major pathogenic B cell epitope of the RA-associated autoantigen GPI, at position 293-307, exposed only on structurally modified GPI on the cartilage surface. B cells to this neo-epitope escape tolerance and could potentially play a role in the pathogenesis of RA.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1400067396
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1136.ard-2022-223633