Back to Search Start Over

Coastal wetland vegetation classification using pixel-based, object-based and deep learning methods based on RGB-UAV

Authors :
Zheng, J.-Y.
Hao, Y.-Y.
Wang, Y.-C.
Zhou, S.-Q.
Wu, Wanben
Yuan, Q.
Gao, Y.
Guo, H.-Q.
Cai, X.-X.
Zhao, B.
Zheng, J.-Y.
Hao, Y.-Y.
Wang, Y.-C.
Zhou, S.-Q.
Wu, Wanben
Yuan, Q.
Gao, Y.
Guo, H.-Q.
Cai, X.-X.
Zhao, B.
Source :
ISSN: 2073-445X
Publication Year :
2022

Abstract

The advancement of deep learning (DL) technology and Unmanned Aerial Vehicles (UAV) remote sensing has made it feasible to monitor coastal wetlands efficiently and precisely. However, studies have rarely compared the performance of DL with traditional machine learning (Pixel-Based (PB) and Object-Based Image Analysis (OBIA) methods) in UAV-based coastal wetland monitoring. We constructed a dataset based on RGB-based UAV data and compared the performance of PB, OBIA, and DL methods in the classification of vegetation communities in coastal wetlands. In addition, to our knowledge, the OBIA method was used for the UAV data for the first time in this paper based on Google Earth Engine (GEE), and the ability of GEE to process UAV data was confirmed. The results showed that in comparison with the PB and OBIA methods, the DL method achieved the most promising classification results, which was capable of reflecting the realistic distribution of the vegetation. Furthermore, the paradigm shifts from PB and OBIA to the DL method in terms of feature engineering, training methods, and reference data explained the considerable results achieved by the DL method. The results suggested that a combination of UAV, DL, and cloud computing platforms can facilitate long-term, accurate monitoring of coastal wetland vegetation at the local scale.

Details

Database :
OAIster
Journal :
ISSN: 2073-445X
Notes :
ISSN: 2073-445X, Land 11 (11);; art. 2039, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1406015234
Document Type :
Electronic Resource