Back to Search Start Over

Regulating the Biomedical and Biocatalytic Properties of Amphiphilic Self-assembling Peptides via Supramolecular Nanostructures

Authors :
Li, Zhao
Li, Zhao
Publication Year :
2023

Abstract

Self-assembly is a fundamental process in the field of nanotechnology, where molecules organize into complex structures spontaneously or induced by environmental factors. Peptides, short chains of amino acids, can self-assemble into many types of nanostructures. The self-assembly of peptides is governed by noncovalent interactions, including electrostatic interactions, hydrogen bonding, hydrophobic interactions, aromatic-aromatic interactions, and van der Waals forces. By varying the amino acid sequences and manipulating environmental parameters, these interactions can be modulated to obtain diverse supramolecular nanostructures, exhibiting a wide range of physical, chemical, and biological properties. Furthermore, the ability to control these properties opens up a world of possibilities in biomedical and biocatalytic applications. From drug delivery systems to enzyme mimics, as well as cancer treatments, the potential of these self-assembling peptides is vast and continues to be a vibrant area of research. Exploiting this potential, this dissertation delves into the design, synthesis, and investigation of self-assembling peptides for a range of applications. The introductory chapters of this document lay the groundwork, providing a comprehensive overview of self-assembly and its potential in biocatalytic and biomedical domains. The focus shifts in the later chapters to drug delivery applications, particularly in the delivery of hydrogen sulfide (H2S), and its implications in cardioprotection and cancer treatment. Finally, this document details an evaluation of self-assembled peptides in the context of biocatalysis using a combined experimental and computational approach. Chapter 3 discusses the design and synthesis of peptide-H2S donor conjugates (PHDCs) with an unusual adamantyl group. Several of PHDCs studied in this chapter self-assembled into novel nanocrescent structures observed under both conventional transmission microscopy (TEM) and cryogenic TEM (cryo-TEM

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1406073609
Document Type :
Electronic Resource