Back to Search
Start Over
Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression
- Publication Year :
- 2009
-
Abstract
- Background - Bipolar disorder is frequently misdiagnosed as major depressive disorder, delaying appropriate treatment and worsening outcome for many bipolar individuals. Emotion dysregulation is a core feature of bipolar disorder. Measures of dysfunction in neural systems supporting emotion regulation might therefore help discriminate bipolar from major depressive disorder. Methods - Thirty-one depressed individuals—15 bipolar depressed (BD) and 16 major depressed (MDD), DSM-IV diagnostic criteria, ages 18–55 years, matched for age, age of illness onset, illness duration, and depression severity—and 16 age- and gender-matched healthy control subjects performed two event-related paradigms: labeling the emotional intensity of happy and sad faces, respectively. We employed dynamic causal modeling to examine significant among-group alterations in effective connectivity (EC) between right- and left-sided neural regions supporting emotion regulation: amygdala and orbitomedial prefrontal cortex (OMPFC). Results - During classification of happy faces, we found profound and asymmetrical differences in EC between the OMPFC and amygdala. Left-sided differences involved top-down connections and discriminated between depressed and control subjects. Furthermore, greater medication load was associated with an amelioration of this abnormal top-down EC. Conversely, on the right side the abnormality was in bottom-up EC that was specific to bipolar disorder. These effects replicated when we considered only female subjects. Conclusions - Abnormal, left-sided, top-down OMPFC–amygdala and right-sided, bottom-up, amygdala–OMPFC EC during happy labeling distinguish BD and MDD, suggesting different pathophysiological mechanisms associated with the two types of depression.
Details
- Database :
- OAIster
- Notes :
- text, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1406108132
- Document Type :
- Electronic Resource