Back to Search Start Over

Observation of a reduced-turbulence regime with boron powder injection in a stellarator

Authors :
NESPOLI, Federico
MASUZAKI, Suguru
TANAKA, Kenji
ASHIKAWA, Naoko
SHOJI, Mamoru
GILSON, Eric
LUNSFORD, Robert
OISHI, Tetsutarou
OISHI, Tetsutaro
IDA, Katsumi
YOSHINUMA, Mikirou
TAKEMURA, Yuki
TAKEMURA, Yuuki
KINOSHITA, Toshiki
MOTOJIMA, Gen
KENMOCHI, Naoki
KAWAMURA, Gakushi
SUZUKI, Chihiro
NAGY, Alex
BORTOLON, A.
PABLANT, Novimir
MOLLEN, Albert
TAMURA, Naoki
GATES, David
MORISAKI, Tomohiro
NESPOLI, Federico
MASUZAKI, Suguru
TANAKA, Kenji
ASHIKAWA, Naoko
SHOJI, Mamoru
GILSON, Eric
LUNSFORD, Robert
OISHI, Tetsutarou
OISHI, Tetsutaro
IDA, Katsumi
YOSHINUMA, Mikirou
TAKEMURA, Yuki
TAKEMURA, Yuuki
KINOSHITA, Toshiki
MOTOJIMA, Gen
KENMOCHI, Naoki
KAWAMURA, Gakushi
SUZUKI, Chihiro
NAGY, Alex
BORTOLON, A.
PABLANT, Novimir
MOLLEN, Albert
TAMURA, Naoki
GATES, David
MORISAKI, Tomohiro
Publication Year :
2022

Abstract

0000-0001-7644-751X<br />In state-of-the-art stellarators, turbulence is a major cause of the degradation of plasma confinement. To maximize confinement, which eventually determines the amount of nuclear fusion reactions, turbulent transport needs to be reduced. Here we report the observation of a confinement regime in a stellarator plasma that is characterized by increased confinement and reduced turbulent fluctuations. The transition to this regime is driven by the injection of submillimetric boron powder grains into the plasma. With the line-averaged electron density being kept constant, we observe a substantial increase of stored energy and electron and ion temperatures. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range between 100 and 200 kHz are excited. We have observed this regime for different heating schemes, namely with both electron and ion cyclotron resonant radio frequencies and neutral beams, for both directions of the magnetic field and both hydrogen and deuterium plasmas.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1409773915
Document Type :
Electronic Resource