Back to Search Start Over

Stochastic 3D Globally Modified Navier-Stokes Equations: Weak Attractors, Invariant Measures and Large Deviations

Authors :
Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Universidad de Sevilla. FQM314: Análisis Estocástico de Sistemas Diferenciales
Caraballo Garrido, Tomás
Chen, Zhang
Yang, Dandan
Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Universidad de Sevilla. FQM314: Análisis Estocástico de Sistemas Diferenciales
Caraballo Garrido, Tomás
Chen, Zhang
Yang, Dandan
Publication Year :
2023

Abstract

This paper is mainly concerned with the asymptotic dynamics of nonautonomous stochastic 3D globally modified Navier-Stokes equations driven by nonlinear noise. Based on the well-posedness of such equations, we first show the existence and uniqueness of weak pullback mean random attractors. Then we investigate the existence of (periodic) invariant measures, the zero-noise limit of periodic invariant measures and their limit as the modification parameter N → N0 ∈ (0, +∞). Furthermore, under weaker conditions, we obtain the existence of invariant measures as well as their limiting behaviors when the external term is independent of time. Finally, by using weak convergence method, we establish the large deviation principle for the solution processes.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1410770268
Document Type :
Electronic Resource