Back to Search Start Over

Random Dynamics and Limiting Behaviors for 3D Globally Modified Navier-Stokes Equations Driven by Colored Noise

Authors :
Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Universidad de Sevilla. FQM314: Análisis Estocástico de Sistemas Diferenciales
Caraballo Garrido, Tomás
Chen, Zhang
Yang, Dandan
Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Universidad de Sevilla. FQM314: Análisis Estocástico de Sistemas Diferenciales
Caraballo Garrido, Tomás
Chen, Zhang
Yang, Dandan
Publication Year :
2023

Abstract

This paper is mainly concerned with the long-term random dynamics for the non-autonomous 3D globally modified Navier-Stokes equations with nonlinear colored noise. We first prove the existence of random attractors of the nonautonomous random dynamical system generated by the solution operators of such equations. Then we establish the existence of invariant measures supported on the random attractors of the underlying system. Random Liouville type theorem is also derived for such invariant measures. Moreover, we further investigate the limiting relationship of invariant measures between the above equations and the corresponding limiting equations when the noise intensity approaches to zero. In addition, we show the invariant measures of such equations with additive white noise can be approximated by those of the corresponding equations with additive colored noise as the correlation time of the colored noise goes to zero.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1410790826
Document Type :
Electronic Resource