Back to Search Start Over

Electrical properties of pinholes in GaN:Mn epitaxial films characterized by conductive AFM

Authors :
Herrera, M.
Cremades Rodríguez, Ana Isabel
Stutzmann, M.
Piqueras de Noriega, Javier
Herrera, M.
Cremades Rodríguez, Ana Isabel
Stutzmann, M.
Piqueras de Noriega, Javier
Publication Year :
2023

Abstract

©2008 Elsevier Ltd. All rights reserved. This work was supported by MEC (Project MAT2006-01259).<br />Mn doped GaN films have been studied by conductive Atomic Force Microscopy (AFM), Cathodoluminescence (CL) and Electron Beam Induced Current (EBIC). AFM measurements revealed the presence of pinholes with diameters between 130 and 380 nm. The distribution, density and size of the pinholes depend on the Mn doping concentration. AFM Leakage Current images (LC) show a defined contrast at the pinhole planes {101 (1) over bar} in the sample with Mn concentration of 6.2 x 10(20) cm(-3). For the sample with an Mn concentration of 1.1 X 10(20) cm(-3), LC contrast appears around the pinholes, while no LC contrast was observed for sample with lower Mn concentration. CL measurements indicate that the samples exhibit strain related to Mn incorporation. In correlation with LC measurements, EBIC images show that pinholes are recombination sites. The combination of these techniques enabled us to analyze the Frenkel-Poole conduction in the samples and its relationship with the residual strain and the doping concentration in the films, which would exclude the mechanism of conduction through dislocations. (C) 2008 Elsevier Ltd. All rights reserved.<br />MEC<br />Depto. de Física de Materiales<br />Fac. de Ciencias Físicas<br />TRUE<br />pub

Details

Database :
OAIster
Notes :
application/pdf, 0749-6036, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1413948049
Document Type :
Electronic Resource