Back to Search Start Over

Benders decomposition for network design covering problems

Authors :
Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI)
Ministerio de Ciencia y Tecnología(España)
Ministerio de Economía y Competitividad (España)
Bucarey, Víctor
Fortz, Bernard
González Blanco, Natividad
Labbé, Martine
Mesa López-Colmenar, Juan Antonio
Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI)
Ministerio de Ciencia y Tecnología(España)
Ministerio de Economía y Competitividad (España)
Bucarey, Víctor
Fortz, Bernard
González Blanco, Natividad
Labbé, Martine
Mesa López-Colmenar, Juan Antonio
Publication Year :
2022

Abstract

We consider two covering variants of the network design problem. We are given a set of origin/destination pairs, called O/D pairs, and each such O/D pair is covered if there exists a path in the network from the origin to the destination whose length is not larger than a given threshold. In the first problem, called the Maximal Covering Network Design problem, one must determine a network that maximizes the total fulfilled demand of the covered O/D pairs subject to a budget constraint on the design costs of the network. In the second problem, called the Partial Covering Network Design problem, the design cost is minimized while a lower bound is set on the total demand covered. After presenting formulations, we develop a Benders decomposition approach to solve the problems. Further, we consider several stabilization methods to determine Benders cuts as well as the addition of cut-set inequalities to the master problem. We also consider the impact of adding an initial solution to our methods. Computational experiments show the efficiency of these different aspects.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1423437519
Document Type :
Electronic Resource