Back to Search Start Over

A mixed integer linear programming model for resolution of the antenna-satellite scheduling problem

Authors :
Universidad de Sevilla. Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos
Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI)
Universidad de Sevilla. TEP945: Ingeniería Aeroespacial
Universidad de Sevilla. FQM241: Optimización Matemática Aplicada (Óptima)
Universidad de Sevilla. TIC130: Investigación en Sistemas Dinámicos en Ingeniería
European Union
Agencia Estatal de Investigación. España
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Junta de Andalucía
Ministerio de Ciencia e Innovación (MICIN). España
Linares López, Lorena
Vázquez Valenzuela, Rafael
Perea Rojas-Marcos, Federico
Galán Vioque, Jorge Francisco
Universidad de Sevilla. Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos
Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI)
Universidad de Sevilla. TEP945: Ingeniería Aeroespacial
Universidad de Sevilla. FQM241: Optimización Matemática Aplicada (Óptima)
Universidad de Sevilla. TIC130: Investigación en Sistemas Dinámicos en Ingeniería
European Union
Agencia Estatal de Investigación. España
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Junta de Andalucía
Ministerio de Ciencia e Innovación (MICIN). España
Linares López, Lorena
Vázquez Valenzuela, Rafael
Perea Rojas-Marcos, Federico
Galán Vioque, Jorge Francisco
Publication Year :
2024

Abstract

This article deals with one of the types of “Satellite Range Scheduling” problems arising in Earth Observation Satellite operations, Antenna-Satellite Scheduling. Given a set of satellites, a set of available antennas and a time horizon, the problem consists of designing an operational plan that assigns satellites to antennas in an optimal fashion. Extending a previous integer linear programming (ILP) model (shortening model, with only integer variables), we propose a mixed ILP (MILP) (shaving model, which includes both continuous and integer variables), to more efficiently solve this problem. After computing the passes generated by the satellites' windows of visibility from the antennas, the optimal planner is able to cancel a pass, move it to another antenna, or shorten its duration, in order to avoid scheduling conflicts. In contrast to the shortening model, which used intersections between passes to determine the best schedule, the shortening operation is now referred to as shaving, since the shaving model can arbitrarily adjust the duration of a pass in a razor-like fashion, giving the model its name. Computational results obtained in tests over realistic scenarios prove that the shaving model outperforms the shortening model, producing fewer cancellations, smaller shaved times, and a fairer distribution of cancelled passes among satellites, with much shorter preprocessing times.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1423453856
Document Type :
Electronic Resource