Back to Search Start Over

Development and numerical study of efficient solvers for single-phase steady flows in tight porous media

Authors :
Pimanov, Vladislav
Pimanov, Vladislav

Abstract

Single-phase flows are attracting significant attention in Digital Rock Physics (DRP), primarily for the computation of permeability of rock samples. Despite the active development of algorithms and software for DRP, pore-scale simulations for tight reservoirs — typically characterized by low multiscale porosity and low permeability — remain challenging. The term "multiscale porosity" means that, despite the high imaging resolution, unresolved porosity regions may appear in the image in addition to pure fluid regions. Due to the enormous complexity of pore space geometries, physical processes occurring at different scales, large variations in coefficients, and the extensive size of computational domains, existing numerical algorithms cannot always provide satisfactory results. Even without unresolved porosity, conventional Stokes solvers designed for computing permeability at higher porosities, in certain cases, tend to stagnate for images of tight rocks. If the Stokes equations are properly discretized, it is known that the Schur complement matrix is spectrally equivalent to the identity matrix. Moreover, in the case of simple geometries, it is often observed that most of its eigenvalues are equal to one. These facts form the basis for the famous Uzawa algorithm. However, in complex geometries, the Schur complement matrix can become severely ill-conditioned, having a significant portion of non-unit eigenvalues. This makes the established Uzawa preconditioner inefficient. To explain this behavior, we perform spectral analysis of the Pressure Schur Complement formulation for the staggered finite-difference discretization of the Stokes equations. Firstly, we conjecture that the no-slip boundary conditions are the reason for non-unit eigenvalues of the Schur complement matrix. Secondly, we demonstrate that its condition number increases with increasing the surface-to-volume ratio of the flow domain. As an alternative to the Uzawa preconditioner, we propose using the di

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1425450300
Document Type :
Electronic Resource